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Motivation
What is oscode and why we need it

I A numerical solver for oscillatory ordinary differential
equations:

ẍ+ 2γ(t)ẋ+ ω2(t)x = 0

I Even if ω(t) changes slowly, if it’s large enough, numerical
solution slow

I Conventional (e.g. Runge–Kutta) methods need to step
through each peak and trough

I Number of steps ∝ computing time
I Oscillators are extremely common in physics
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A brief summary of the algorithm

I Stepping along the numerical solution, initial value problem
I 2 essential components:

1. Switching between approximations: different method for when
solution is oscillatory (ω slowly changing) and isn’t,

2. Adaptive stepsize: update stepsize based on error estimate on
step and tolerance.

I At each step, attempt to use both methods, and choose one
which gives larger stepsize within the given error tolerance
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Runge–Kutta and Wentzel–Kramers–Brillouin

RK
I ẋ = F (x)

I Represent solution as Taylor-series:

x(ti+1) = x(ti) + hFi +
h2

2
dF
dt

∣∣∣∣
ti

+ . . .

I Higher-order derivatives from evaluations of F :
x(ti+1) = x(ti) +

∑
j bjhF (x(tj)).

WKB
I Use the fact that the solution oscillates: x(t) ∼ A(t)eiφ(t)

I x(t) ∼ 1√
ω(t)

e±i
∫ t ω(τ)dτ+...

RKWKB1

1W. J. Handley, A. N. Lasenby, and M. P. Hobson. “The
Runge-Kutta-Wentzel-Kramers-Brillouin Method”. In: arXiv e-prints (Dec.
2016). arXiv: 1612.02288 [physics.comp-ph].
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Airy equation
ẍ+ tx = 0

I Maximally hard for
RK-based methods, there is
analytic solution → study
error properties

I In pure RK, stepsize
decreases and numerical
error is accumulated

I oscode switches from RK to
WKB early on, increases
stepsize polynomially and
stays within error tolerance
(10−4)
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‘Burst’ equation
ẍ+ n2−1

(1+t2)2
x = 0

I ∼ n/2 oscillations within
|t| < n

I n = 40 pictured
I pure RK rapidly accumulates

error in central region
I ∼ symmetric switching
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‘Burst’ equation
ẍ+ n2−1

(1+t2)2
x = 0

I n = 105 pictured (but can
go up to 1010, then true
solution is hard to plot due
to sine and cosine’s
accuracy)

I Number of oscillations
traversed in a single step in
top figure

I Runtime as function of error
tolerance in bottom (relative
to n = 10, tol= 10−5)

I Gentle scaling of runtime
within 10−6 <tol< 10−4
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Schrödinger equation
Ψ′′(x) + 2m(E − V (x))Ψ(x) = 0

Can estimate eigenvalues in arbitrary 1D potential:
I Guess eigenvalue E

I Start two solutions (ψL,ψR) from outside the well, initial
conditions ψ = 0, ψ′ = c

I If two solutions ‘match up’ in the middle, eigenvalue is found

I Minimise Ψ′L
ΨL
− Ψ′R

ΨR
as a function of the guess E

I Eigenvalues obtained match reality much more closely than the
tolerance set
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Harmonic potential well
V (x) = x2
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Harmonic well + quartic anharmonicity
V (x) = x2 + λx4, λ = 1

n Eoscode
n E∗n

2 ∼ log10 |∆E/E|
0 1.392353 1.392352 -6
1 4.648815 4.648813 -7
2 8.6550501 8.6550500 -8
3 13.156806 13.156804 -7
4 18.0577 18.0576 -5
15 88.6104 88.6103 -6
16 96.1291 96.1296 -5
17 103.793 103.795 -5
18 111.6025 111.6020 -6
19 119.5440 119.5442 -6
50 417.05620 417.05626 -7
100 1035.5440 1035.5442 -7
1000 21932.7848 21932.7840 -8
10000 471103.81 471103.80 -8

2K. Banerjee et al. “The Anharmonic Oscillator”. In: Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences
360.1703 (1978).
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Mukhanov–Sasaki equation
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Ṙk +
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k
aH

)2Rk = 0

I Governs evolution of
curvature perturbation Rk
with lengthscale k−1

I (Using e-folds of inflation,
N = ln a as independent
variable)

I If lengthscale exceeds the
comoving Hubble horizon,
loss of causal connection →
‘freeze-out’

I Power spectrum of Rk is the
primordial power spectrum
(PPS), precursor of the
CMB
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Mukhanov–Sasaki equation
R̈k + 2

(
φ̈

φ̇
− 1

2
φ̇2 + 3

2

)
Ṙk +

(
k
aH

)2Rk = 0

I Need to compute PPS numerically for many inflationary
models, e.g. kinetic dominance34

I But this is challenging at large k
I Other fast solvers exist, but rely on assumptions5

I Speed up forward-modelling phase of inference significantly
(> 1000x), e.g. closed-universe models6

3L. T. Hergt et al. “Case for kinetically dominated initial conditions for
inflation”. In: Phys. Rev. D 100 (2 July 2019), p. 023502.

4L. T. Hergt et al. “Constraining the kinetically dominated universe”. In:
Phys. Rev. D 100 (2 July 2019), p. 023501.

5W. I. J. Haddadin and W. J. Handley. Rapid numerical solutions for the
Mukhanov-Sazaki equation. 2018. arXiv: 1809.11095 [astro-ph.CO].

6Will Handley. “Primordial power spectra for curved inflating universes”. In:
Phys. Rev. D 100 (12 Dec. 2019), p. 123517.
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Closed universes
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Extensions

I Generalising to many dimensions (is challenging)7

I Generalising to higher order ODEs
I Use an approximation other than WKB
I oscode and its underlying algorithm are the beginning of a

novel suite of methods

7Jamie Bamber and Will Handley. “Beyond the
Runge-Kutta-Wentzel-Kramers-Brillouin method”. In: arXiv e-prints (July
2019). arXiv: 1907.11638 [physics.comp-ph].

Fruzsina Agocs <fa325@cam.ac.uk> 15/19

https://arxiv.org/abs/1907.11638


Extensions

I Generalising to many dimensions (is challenging)7

I Generalising to higher order ODEs

I Use an approximation other than WKB
I oscode and its underlying algorithm are the beginning of a

novel suite of methods

7Jamie Bamber and Will Handley. “Beyond the
Runge-Kutta-Wentzel-Kramers-Brillouin method”. In: arXiv e-prints (July
2019). arXiv: 1907.11638 [physics.comp-ph].

Fruzsina Agocs <fa325@cam.ac.uk> 15/19

https://arxiv.org/abs/1907.11638


Extensions

I Generalising to many dimensions (is challenging)7

I Generalising to higher order ODEs
I Use an approximation other than WKB

I oscode and its underlying algorithm are the beginning of a
novel suite of methods

7Jamie Bamber and Will Handley. “Beyond the
Runge-Kutta-Wentzel-Kramers-Brillouin method”. In: arXiv e-prints (July
2019). arXiv: 1907.11638 [physics.comp-ph].

Fruzsina Agocs <fa325@cam.ac.uk> 15/19

https://arxiv.org/abs/1907.11638


Extensions

I Generalising to many dimensions (is challenging)7

I Generalising to higher order ODEs
I Use an approximation other than WKB
I oscode and its underlying algorithm are the beginning of a

novel suite of methods

7Jamie Bamber and Will Handley. “Beyond the
Runge-Kutta-Wentzel-Kramers-Brillouin method”. In: arXiv e-prints (July
2019). arXiv: 1907.11638 [physics.comp-ph].

Fruzsina Agocs <fa325@cam.ac.uk> 15/19

https://arxiv.org/abs/1907.11638


Open-source software, documentation, examples
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Summary

I oscode is a numerical solver for oscillatory ordinary differential
equations8

I Underlying algorithm switches between methods depending on
whether solution is oscillatory

I Can skip over large regions of oscillations, reducing
computation time, speeding up forward modelling

I Wide range of uses: quantum mechanics, electrical circuits,
cosmology, . . .

8F. J. Agocs et al. “Efficient method for solving highly oscillatory ordinary
differential equations with applications to physical systems”. In: Phys. Rev.
Research 2 (1 Jan. 2020), p. 013030.
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Error estimates
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Gauss–Lobatto integration
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Extended WKB

ẍ+ 2γẋ+ T 2ω2x = 0. (1)

x(t) ∼ exp

(
T

∞∑

n=0

Sn(t)T
−n
)
. (2)

Ṡ0(t) = ±iω, (3)

Ṡi(t) = −
1

2S′0


S̈i−1 + 2γṠi−1 +

i−1∑

j=1

ṠjṠi−j


 . (4)
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