oscode: fast solutions of oscillatory ODEs in cosmology

Fruzsina Agocs

Astrophysics group, Cavendish Laboratory

Kavli Institute for Cosmology, Cambridge
January 29, 2020

Outline

Motivation

Algorithm

Applications
Airy and 'burst' equations
Quantum mechanics
Cosmology

Extensions

Summary

Motivation

What is oscode and why we need it

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

$$
\ddot{x}+2 \gamma(t) \dot{x}+\omega^{2}(t) x=0
$$

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

$$
\ddot{x}+2 \gamma(t) \dot{x}+\omega^{2}(t) x=0
$$

- Even if $\omega(t)$ changes slowly, if it's large enough, numerical solution slow

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

$$
\ddot{x}+2 \gamma(t) \dot{x}+\omega^{2}(t) x=0
$$

- Even if $\omega(t)$ changes slowly, if it's large enough, numerical solution slow
- Conventional (e.g. Runge-Kutta) methods need to step through each peak and trough

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

$$
\ddot{x}+2 \gamma(t) \dot{x}+\omega^{2}(t) x=0
$$

- Even if $\omega(t)$ changes slowly, if it's large enough, numerical solution slow
- Conventional (e.g. Runge-Kutta) methods need to step through each peak and trough
- Number of steps \propto computing time

Motivation

What is oscode and why we need it

- A numerical solver for oscillatory ordinary differential equations:

$$
\ddot{x}+2 \gamma(t) \dot{x}+\omega^{2}(t) x=0
$$

- Even if $\omega(t)$ changes slowly, if it's large enough, numerical solution slow
- Conventional (e.g. Runge-Kutta) methods need to step through each peak and trough
- Number of steps \propto computing time
- Oscillators are extremely common in physics

A brief summary of the algorithm

A brief summary of the algorithm

- Stepping along the numerical solution, initial value problem

A brief summary of the algorithm

- Stepping along the numerical solution, initial value problem
- 2 essential components:

A brief summary of the algorithm

- Stepping along the numerical solution, initial value problem
- 2 essential components:

1. Switching between approximations: different method for when solution is oscillatory (ω slowly changing) and isn't,

A brief summary of the algorithm

- Stepping along the numerical solution, initial value problem
- 2 essential components:

1. Switching between approximations: different method for when solution is oscillatory (ω slowly changing) and isn't,
2. Adaptive stepsize: update stepsize based on error estimate on step and tolerance.

A brief summary of the algorithm

- Stepping along the numerical solution, initial value problem
- 2 essential components:

1. Switching between approximations: different method for when solution is oscillatory (ω slowly changing) and isn't,
2. Adaptive stepsize: update stepsize based on error estimate on step and tolerance.

- At each step, attempt to use both methods, and choose one which gives larger stepsize within the given error tolerance

Runge-Kutta and Wentzel-Kramers-Brillouin

$$
\stackrel{\text { RK }}{ }{ }^{-\dot{x}=F(x)}
$$

[^0]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

[^1]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

- Higher-order derivatives from evaluations of F :

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\sum_{j} b_{j} h F\left(x\left(t_{j}\right)\right) .
$$

[^2]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

- Higher-order derivatives from evaluations of F :

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\sum_{j} b_{j} h F\left(x\left(t_{j}\right)\right) .
$$

WKB

[^3]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

- Higher-order derivatives from evaluations of F :

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\sum_{j} b_{j} h F\left(x\left(t_{j}\right)\right) .
$$

WKB

- Use the fact that the solution oscillates: $x(t) \sim A(t) e^{i \phi(t)}$

[^4]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

- Higher-order derivatives from evaluations of F :

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\sum_{j} b_{j} h F\left(x\left(t_{j}\right)\right) .
$$

WKB

- Use the fact that the solution oscillates: $x(t) \sim A(t) e^{i \phi(t)}$
- $x(t) \sim \frac{1}{\sqrt{\omega(t)}} e^{ \pm i \int^{t} \omega(\tau) d \tau+\ldots}$

[^5]
Runge-Kutta and Wentzel-Kramers-Brillouin

RK

- $\dot{x}=F(x)$
- Represent solution as Taylor-series:

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+h F_{i}+\left.\frac{h^{2}}{2} \frac{d F}{d t}\right|_{t_{i}}+\ldots
$$

- Higher-order derivatives from evaluations of F :

$$
x\left(t_{i+1}\right)=x\left(t_{i}\right)+\sum_{j} b_{j} h F\left(x\left(t_{j}\right)\right) .
$$

WKB

- Use the fact that the solution oscillates: $x(t) \sim A(t) e^{i \phi(t)}$
- $x(t) \sim \frac{1}{\sqrt{\omega(t)}} e^{ \pm i \int^{t} \omega(\tau) d \tau+\ldots}$

RKWKB ${ }^{1}$

[^6]
Airy equation

- Maximally hard for RK-based methods, there is analytic solution \rightarrow study error properties

Airy equation

- Maximally hard for RK-based methods, there is analytic solution \rightarrow study error properties
- In pure RK, stepsize decreases and numerical error is accumulated

Airy equation

- Maximally hard for RK-based methods, there is analytic solution \rightarrow study error properties
- In pure RK, stepsize decreases and numerical error is accumulated
- oscode switches from RK to WKB early on, increases stepsize polynomially and stays within error tolerance $\left(10^{-4}\right)$

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $\sim n / 2$ oscillations within $|t|<n$

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $\sim n / 2$ oscillations within $|t|<n$
- $n=40$ pictured

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $\sim n / 2$ oscillations within $|t|<n$
- $n=40$ pictured
- pure RK rapidly accumulates error in central region

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $\sim n / 2$ oscillations within $|t|<n$
- $n=40$ pictured
- pure RK rapidly accumulates error in central region
- \sim symmetric switching

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$
$n=10^{5}$ pictured (but can go up to 10^{10}, then true solution is hard to plot due to sine and cosine's accuracy)

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $n=10^{5}$ pictured (but can go up to 10^{10}, then true solution is hard to plot due to sine and cosine's accuracy)
- Number of oscillations
traversed in a single step in top figure

relative tolerance 'rtol'

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $n=10^{5}$ pictured (but can go up to 10^{10}, then true solution is hard to plot due to sine and cosine's accuracy)
- Number of oscillations traversed in a single step in top figure
- Runtime as function of error tolerance in bottom (relative to $n=10$, tol $=10^{-5}$)

relative tolerance 'rtol'

'Burst' equation

$\ddot{x}+\frac{n^{2}-1}{\left(1+t^{2}\right)^{2}} x=0$

- $n=10^{5}$ pictured (but can go up to 10^{10}, then true solution is hard to plot due to sine and cosine's accuracy)
- Number of oscillations traversed in a single step in top figure
- Runtime as function of error tolerance in bottom (relative to $n=10$, tol $=10^{-5}$)
- Gentle scaling of runtime within $10^{-6}<$ tol $<10^{-4}$

relative tolerance 'rtol'

Schrödinger equation

$$
\Psi^{\prime \prime}(x)+2 m(E-V(x)) \Psi(x)=0
$$

Can estimate eigenvalues in arbitrary 1D potential:

- Guess eigenvalue E

Schrödinger equation

$$
\Psi^{\prime \prime}(x)+2 m(E-V(x)) \Psi(x)=0
$$

Can estimate eigenvalues in arbitrary 1D potential:

- Guess eigenvalue E
- Start two solutions $\left(\psi_{L}, \psi_{R}\right)$ from outside the well, initial conditions $\psi=0, \psi^{\prime}=c$

Schrödinger equation

$$
\Psi^{\prime \prime}(x)+2 m(E-V(x)) \Psi(x)=0
$$

Can estimate eigenvalues in arbitrary 1D potential:

- Guess eigenvalue E
- Start two solutions $\left(\psi_{L}, \psi_{R}\right)$ from outside the well, initial conditions $\psi=0, \psi^{\prime}=c$
- If two solutions 'match up' in the middle, eigenvalue is found

Schrödinger equation

$$
\Psi^{\prime \prime}(x)+2 m(E-V(x)) \Psi(x)=0
$$

Can estimate eigenvalues in arbitrary 1D potential:

- Guess eigenvalue E
- Start two solutions $\left(\psi_{L}, \psi_{R}\right)$ from outside the well, initial conditions $\psi=0, \psi^{\prime}=c$
- If two solutions 'match up' in the middle, eigenvalue is found
- Minimise $\frac{\Psi_{L}^{\prime}}{\Psi_{L}}-\frac{\Psi_{R}^{\prime}}{\Psi_{R}}$ as a function of the guess E

Schrödinger equation

$$
\Psi^{\prime \prime}(x)+2 m(E-V(x)) \Psi(x)=0
$$

Can estimate eigenvalues in arbitrary 1D potential:

- Guess eigenvalue E
- Start two solutions $\left(\psi_{L}, \psi_{R}\right)$ from outside the well, initial conditions $\psi=0, \psi^{\prime}=c$
- If two solutions 'match up' in the middle, eigenvalue is found
- Minimise $\frac{\Psi_{L}^{\prime}}{\Psi_{L}}-\frac{\Psi_{R}^{\prime}}{\Psi_{R}}$ as a function of the guess E
- Eigenvalues obtained match reality much more closely than the tolerance set

Harmonic potential well

$V(x)=x^{2}$

Harmonic well + quartic anharmonicity

$V(x)=x^{2}+\lambda x^{4}, \lambda=1$

n	$E_{n}^{\text {oscode }}$	$E_{n}^{* 2}$	$\sim \log _{10}\|\Delta E / E\|$
0	1.392353	1.392352	-6
1	4.648815	4.648813	-7
2	8.6550501	8.6550500	-8
3	13.156806	13.156804	-7
4	18.0577	18.0576	-5
15	88.6104	88.6103	-6
16	96.1291	96.1296	-5
17	103.793	103.795	-5
18	111.6025	111.6020	-6
19	119.5440	119.5442	-6
50	417.05620	417.05626	-7
100	1035.5440	1035.5442	-7
1000	21932.7848	21932.7840	-8
10000	471103.81	471103.80	-8

[^7]
Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\tilde{\phi}}{\boldsymbol{\phi}}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Governs evolution of curvature perturbation \mathcal{R}_{k} with lengthscale k^{-1}

Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\tilde{\phi}}{\boldsymbol{\phi}}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Governs evolution of curvature perturbation \mathcal{R}_{k} with lengthscale k^{-1}
- (Using e-folds of inflation, $N=\ln a$ as independent variable)

Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\ddot{\phi}}{\phi}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Governs evolution of curvature perturbation \mathcal{R}_{k} with lengthscale k^{-1}
- (Using e-folds of inflation, $N=\ln a$ as independent variable)
- If lengthscale exceeds the comoving Hubble horizon, loss of causal connection \rightarrow 'freeze-out'

Mukhanov-Sasaki equation

 $\ddot{\mathcal{R}}_{k}+2\left(\frac{\ddot{\phi}}{\phi}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$- Governs evolution of curvature perturbation \mathcal{R}_{k} with lengthscale k^{-1}
- (Using e-folds of inflation, $N=\ln a$ as independent variable)
- If lengthscale exceeds the comoving Hubble horizon, loss of causal connection \rightarrow 'freeze-out'
- Power spectrum of \mathcal{R}_{k} is the primordial power spectrum (PPS), precursor of the CMB

Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\tilde{\phi}}{\boldsymbol{\phi}}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Need to compute PPS numerically for many inflationary models, e.g. kinetic dominance ${ }^{34}$

[^8]
Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\text { 弚 }}{\dot{\phi}}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Need to compute PPS numerically for many inflationary models, e.g. kinetic dominance ${ }^{34}$
- But this is challenging at large k
${ }^{3}$ L. T. Hergt et al. "Case for kinetically dominated initial conditions for inflation". In: Phys. Rev. D 100 (2 July 2019), p. 023502.
${ }^{4}$ L. T. Hergt et al. "Constraining the kinetically dominated universe". In: Phys. Rev. D 100 (2 July 2019), p. 023501.
${ }^{5}$ W. I. J. Haddadin and W. J. Handley. Rapid numerical solutions for the Mukhanov-Sazaki equation. 2018. arXiv: 1809.11095 [astro-ph.CO].
${ }^{6}$ Will Handley. "Primordial power spectra for curved inflating universes". In: Phys. Rev. D 100 (12 Dec. 2019), p. 123517.

Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\ddot{\phi}}{\dot{\phi}}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Need to compute PPS numerically for many inflationary models, e.g. kinetic dominance ${ }^{34}$
- But this is challenging at large k
- Other fast solvers exist, but rely on assumptions ${ }^{5}$
${ }^{3}$ L. T. Hergt et al. "Case for kinetically dominated initial conditions for inflation". In: Phys. Rev. D 100 (2 July 2019), p. 023502.
${ }^{4} \mathrm{~L}$. T. Hergt et al. "Constraining the kinetically dominated universe". In: Phys. Rev. D 100 (2 July 2019), p. 023501.
${ }^{5}$ W. I. J. Haddadin and W. J. Handley. Rapid numerical solutions for the Mukhanov-Sazaki equation. 2018. arXiv: 1809.11095 [astro-ph.CO].
${ }^{6}$ Will Handley. "Primordial power spectra for curved inflating universes". In: Phys. Rev. D 100 (12 Dec. 2019), p. 123517.

Mukhanov-Sasaki equation

$\ddot{\mathcal{R}}_{k}+2\left(\frac{\tilde{\phi}}{\phi}-\frac{1}{2} \dot{\phi}^{2}+\frac{3}{2}\right) \dot{\mathcal{R}}_{k}+\left(\frac{k}{a H}\right)^{2} \mathcal{R}_{k}=0$

- Need to compute PPS numerically for many inflationary models, e.g. kinetic dominance ${ }^{34}$
- But this is challenging at large k
- Other fast solvers exist, but rely on assumptions ${ }^{5}$
- Speed up forward-modelling phase of inference significantly ($>1000 x$), e.g. closed-universe models ${ }^{6}$
${ }^{3}$ L. T. Hergt et al. "Case for kinetically dominated initial conditions for inflation". In: Phys. Rev. D 100 (2 July 2019), p. 023502.
${ }^{4}$ L. T. Hergt et al. "Constraining the kinetically dominated universe". In: Phys. Rev. D 100 (2 July 2019), p. 023501.
${ }^{5}$ W. I. J. Haddadin and W. J. Handley. Rapid numerical solutions for the Mukhanov-Sazaki equation. 2018. arXiv: 1809.11095 [astro-ph.CO].
${ }^{6}$ Will Handley. "Primordial power spectra for curved inflating universes". In:
Phys. Rev. D 100 (12 Dec. 2019), p. 123517.

Closed universes

Extensions

- Generalising to many dimensions (is challenging) ${ }^{7}$
> ${ }^{7}$ Jamie Bamber and Will Handley. "Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method". In: arXiv e-prints (July 2019). arXiv: 1907.11638 [physics.comp-ph].

Extensions

- Generalising to many dimensions (is challenging) ${ }^{7}$
- Generalising to higher order ODEs
> ${ }^{7}$ Jamie Bamber and Will Handley. "Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method". In: arXiv e-prints (July 2019). arXiv: 1907.11638 [physics.comp-ph].

Extensions

- Generalising to many dimensions (is challenging) ${ }^{7}$
- Generalising to higher order ODEs
- Use an approximation other than WKB
> ${ }^{7}$ Jamie Bamber and Will Handley. "Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method". In: arXiv e-prints (July 2019). arXiv: 1907.11638 [physics.comp-ph].

Extensions

- Generalising to many dimensions (is challenging) ${ }^{7}$
- Generalising to higher order ODEs
- Use an approximation other than WKB
- oscode and its underlying algorithm are the beginning of a novel suite of methods

[^9]
Open－source software，documentation，examples

＜＞Code	（1）Issues 0	12 Pull requests 0	O Actions	［1］P	ojects 0	包Wiki	110 Sec	rity	Lill Ins	ghts	ettings
Code for efficient solution of oscillatory ordinary differential equations Edit											
numerical－n	ethods diffe	atial－equations osc	or runge－	uta	wentzel－kra	amers－brillouin	numpy	Manage topics			
（1） 96	ommits	83 branches	（T） 0 pac	ages		0 releases		42 contributors			4 View license
Branch：ma	ter－New p	request				Create	new file	Uploa	lad files	Find file	Clone or download－
17．fruzsinaagocs Removed unnecessary dependency								\checkmark Latest commit 31defcc on 24 Dec 2019			
Elexampl		Added cosmology example－primordial power spectra									8 months ago
－include		Removed unnecessary dependency									last month
－pyosco		Bug occurring when ti＝tf corrected									last month
－tests		Renamed test script so pytest can find it									7 months ago
目．gitigno		Added cosmology example－primordial power spectra									8 months ago
目 travis．y		Removed＇nightly＇python build									4 months ago
目 LICENS		Update LICENSE									8 months ago
目 READM	．rst	Bug occurring when ti＝tf corrected									last month
目 require	ents．txt	added requirements．txt									8 months ago
国 setup．p		Bug occurring when ti＝tf corrected									last month

Open-source software, documentation, examples

Docs $\%$ Introduction
© Edit on GitHub

oscode: Oscillatory ordinary differential equation solver

oscode:	oscillatory ordinary differential equation solver
Author:	Fruzsina Agocs, Will Handley, Mike Hobson, and Anthony Lasenby
Version:	0.1 .2
Homepage:	https://github.com/fruzsinaagocs/oscode
Documentation:	https://oscode.readthedocs.io
docs passing	

oscode is a C++ tool with a Python interface that solves oscillatory ordinary differential equations efficiently. It is designed to deal with equations of the form

$$
\ddot{x}(t)+2 \gamma(t) \dot{x}(t)+\omega^{2}(t) x(t)=0,
$$

where $\gamma(t)$ and $\omega(t)$ can be given as

- In C++, explicit functions or sequence containers (Eigen::Vectors, arrays, std::vectors, lists),

Open-source software, documentation, examples

A closed universe

All we have to do differently is:

1. solve the background equations again with $K=1$,

In [37]:

```
K = 1
N_i = -1.74
o\overline{k}_i=1.0
N = np.linspace(N_i,N_f,Nbg)
# Initial conditions
phi_i = np.sqrt(4.*(1./ok_i + K)*np.exp(-2.0*N_i)/m**2)
logōk_i = np.log(ok_i)
y_i = np.array([logok_i, phi_i])
# Solve for the backgrround until the end of inflation
endinfl.terminal = True
endinfl.direction = 1
bgsol = solve_ivp(bgeqs, (N_i,N_f), y_i, events=endinfl, t_eval=N, rtol=1
e-8, atol=1e-10)
```


Summary

- oscode is a numerical solver for oscillatory ordinary differential equations ${ }^{8}$

[^10]
Summary

- oscode is a numerical solver for oscillatory ordinary differential equations ${ }^{8}$
- Underlying algorithm switches between methods depending on whether solution is oscillatory

[^11]
Summary

- oscode is a numerical solver for oscillatory ordinary differential equations ${ }^{8}$
- Underlying algorithm switches between methods depending on whether solution is oscillatory
- Can skip over large regions of oscillations, reducing computation time, speeding up forward modelling

[^12]
Summary

- oscode is a numerical solver for oscillatory ordinary differential equations ${ }^{8}$
- Underlying algorithm switches between methods depending on whether solution is oscillatory
- Can skip over large regions of oscillations, reducing computation time, speeding up forward modelling
- Wide range of uses: quantum mechanics, electrical circuits, cosmology, ...

[^13]
Error estimates

Gauss-Lobatto integration

Gaussian quadrature

$$
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Gauss - Lobatto quadrature

$$
\begin{array}{lc}
\text { interval }(a, b): & {[-1,1]} \\
w(x): & 1 \\
\text { polynomials : } & P_{n-1}^{\prime}(x)
\end{array}
$$

Gauss - Lobatto quadrature

$$
\begin{aligned}
& \int_{-1}^{1} f(x) d x \simeq \frac{2}{n(n-1)}(f(-1)+f(1))+\sum_{i=2}^{n-1} w_{i} f\left(x_{i}\right) \\
& \int_{a}^{b} f(x) d x \simeq \frac{b-a}{2}\left[\frac{2(f(a)+f(b))}{n(n-1)}+\sum_{i=1}^{n} w_{i} f\left(\frac{b-a}{2} x_{i}+\frac{b+a}{2}\right)\right]
\end{aligned}
$$

Extended WKB

$$
\begin{gather*}
\ddot{x}+2 \gamma \dot{x}+T^{2} \omega^{2} x=0 . \tag{1}\\
x(t) \sim \exp \left(T \sum_{n=0}^{\infty} S_{n}(t) T^{-n}\right) . \tag{2}\\
\dot{S}_{0}(t)= \pm i \omega, \tag{3}\\
\dot{S}_{i}(t)=-\frac{1}{2 S_{0}^{\prime}}\left(\ddot{S}_{i-1}+2 \gamma \dot{S}_{i-1}+\sum_{j=1}^{i-1} \dot{S}_{j} \dot{S}_{i-j}\right) . \tag{4}
\end{gather*}
$$

[^0]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^1]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^2]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^3]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^4]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^5]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^6]: ${ }^{1}$ W. J. Handley, A. N. Lasenby, and M. P. Hobson. "The Runge-Kutta-Wentzel-Kramers-Brillouin Method". In: arXiv e-prints (Dec. 2016). arXiv: 1612.02288 [physics.comp-ph].

[^7]: ${ }^{2} \mathrm{~K}$. Banerjee et al. "The Anharmonic Oscillator". In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 360.1703 (1978).

[^8]: ${ }^{3}$ L. T. Hergt et al. "Case for kinetically dominated initial conditions for inflation". In: Phys. Rev. D 100 (2 July 2019), p. 023502.
 ${ }^{4}$ L. T. Hergt et al. "Constraining the kinetically dominated universe". In: Phys. Rev. D 100 (2 July 2019), p. 023501.
 ${ }^{5}$ W. I. J. Haddadin and W. J. Handley. Rapid numerical solutions for the Mukhanov-Sazaki equation. 2018. arXiv: 1809.11095 [astro-ph.CO].
 ${ }^{6}$ Will Handley. "Primordial power spectra for curved inflating universes". In: Phys. Rev. D 100 (12 Dec. 2019), p. 123517.

[^9]: ${ }^{7}$ Jamie Bamber and Will Handley. "Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method". In: arXiv e-prints (July 2019). arXiv: 1907.11638 [physics.comp-ph].

[^10]: ${ }^{8}$ F. J. Agocs et al. "Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems". In: Phys. Rev. Research 2 (1 Jan. 2020), p. 013030.

[^11]: ${ }^{8}$ F. J. Agocs et al. "Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems". In: Phys. Rev. Research 2 (1 Jan. 2020), p. 013030.

[^12]: ${ }^{8}$ F. J. Agocs et al. "Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems". In: Phys. Rev. Research 2 (1 Jan. 2020), p. 013030.

[^13]: ${ }^{8}$ F. J. Agocs et al. "Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems". In: Phys. Rev. Research 2 (1 Jan. 2020), p. 013030.

