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1. Geometry and problem setup 

Fig. 1. Shows the geometry of the problem. It is posed as a Neumann BVP 
with an upwards propagating radiation condition. The quasiperiodicity 
condition ensures that the solution obeys the symmetry of the boundary, 
accruing a Bloch phase of  over a period, where  is the horizontal 
(on-surface) wavenumber.





If the total wavevector is , with the set of possible horizontal 

wavenumbers ,  , all corresponding to the same Bloch 

phase, then .

α = eiκ κ

(Δ + ω2)u = 0 in Ω, PDE 
un = 0 on ∂Ω, boundary condition

u(x1 + nd, x2) = αnu(x1, x2) (x1, x2) ∈ Ω, quasiperiodicity

u(x1, x2) = ∑
n∈ℤ

cneiκnx1+knx2, x2 > x(0)
2 radiation condition

⃗k = (κn, kn)
κn = κ + 2πn n ∈ ℤ

kn = ω2 − κ2
n

0. Summary 

Corrugated, periodic surfaces that reflect sound (are “sound-hard”) can 
give rise to trapped acoustic modes that travel along the surface and 
are evanescent away from it. We reproduce these trapped modes 
numerically, find their dispersion relation, and model scattering from a 
nearby quasiperiodic array of point sources, with an aim to simulate a 
single point source by using the array scanning method. We combine 
the trapped mode dispersion with a simple ray model to explain the 
chirp-like impulse response observed at long, periodic structures such 
at the El Castillo below [1].

3. Results 

• Dispersion relation of trapped modes: Fig. 2. shows the dispersion 
relation  found for the first Brillouin zone. With Neumann 
boundary conditions, there is always a trapped mode, but as 

, it approaches the light line, , becoming increasingly 
weakly trapped (with a longer upwards decay length). The 
strongest trapped mode, at , is shown in Fig. 3; no trapped 
modes exist above the associated frequency .


• Group velocity: Dispersion is the separation of modes during wave 
propagation due to the difference of phase and group velocities. 
A mode of horizontal wavenumber  travels at . A plot 

of  in Fig. 4. shows this separation. By inverting  from 

Fig. 2., we compute , and from that the times at which 

different frequency components from a wavepacket arrive at a 
given distance along the stairs. Fig. 5. shows an example, 
computed using parameters of the stairs of El Castillo at Chichen 
Itza. Converted to audio, this would sound like a sharp rise (a 
“chirp”), followed by long ringing.


• Scattering from an array of point sources: Fig. 6. shows the total 
field from an array of point sources, with ,  chosen to be far 
from a Wood anomaly. The treatment of Wood anomalies in array 
scanning is the subject of ongoing work.
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Fig. 1. Geometry of the problem.  is an incoming wave,  the 
scattered wave. The coordinates are rotated to be parallel and normal to 
the slope of the stairs, and the unit cell (a single step) is of width .
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2. Methods 

• Periodization: We reduce the computation to one unit cell [2] by using the 
periodic Green’s function (GF) ,


.         


We separate the GF into near- ( ) and far-field parts, and write the 
far-field contribution as a Neumann series 

,


where the  are the Bessel functions, and the  are referred to as lattice 
sums. The  involve sums over th order Hankel functions and are thus 
are slowly convergent, but may be represented with integrals [3] which 
are readily computed using numerical quadrature. Since they are 
independent of the target location ( ), they only need to be computed once 
per wavenumber. 


• Boundary integral: We use a single-layer representation for the scattered 
wave, 


.


Using the appropriate jump relations yields the Fredholm integral equation

,


Where the boundary data is ,  is the double-layer kernel, 

and  the unknown density. We solve the integral equation via Nystrom’s 
method, which involves numerical quadrature on nodes chosen carefully on 
the boundary to avoid the corner singularities. 


Φp( ⃗x, ⃗y)

−(Δ + ω2)Φp( ⃗x,0) = δ(x2)
∞

∑
n=−∞

αnδ(x1 − nd)

|n | ≤ 1

Φp,far( ⃗x,0) =
i
4 [S0(ω, κ)J0(ω, ⃗x) + 2

∞

∑
n=1

Sn(ω, κ)Jn(ω, ⃗x)a( ⃗x)]
Jn Sn

Sn n

⃗x

u = 𝒮σ = ∫∂Ω
Φp(x, y)σ(y)dsy

(I − 2DT)σ = − 2f
f = − (ui)n |∂Ω D

σ

4. Future and ongoing work 

• Frequency- and time-domain solution from nearby point source with 
array scanning:


- Wood anomalies on the light line makes it necessary to (1) deform 
the complex contour, or (2) use a special quadrature rule.


• Push to high-order accuracy and fast solution time

- Special quadrature rules for nearby (non-colinear) panel 

interactions.

- Faster evaluation of periodic GF via local-to-local expansion.

• Analyze power in trapped modes: does the trapping get 

exponentially weaker as ?
κ → 0
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• Corner refinement: Initially, the boundary is split into equally sized 
panels with an equal number of Gauss—Legendre quadrature nodes 
on each, then corner-adjacent panels are split in a  ratio, 
getting smaller towards the corner. The node coordinates are relative 
to the nearest corner, to avoid loss of accuracy due to catastrophic 
cancellation.


• Finding trapped modes: Trapped modes are eigenmodes of the 
Neumann BVP; they occur when there is a non-trivial solution to


,

i.e. when . We find them by fixing , then using 
Newton’s method to find the roots of the Fredholm determinant as a 
function of .


• Array scanning: Due to use of the periodic GF, non-periodic wave 
sources are not allowed. Scattering from a single point source, 
however, may be computed using the following trick [4]. If a periodic 
array of point sources with Bloch phase  is written


,


then a single point source is





The scattered wave from a point source can thus be obtained by 
integrating along  in the first Brillouin zone, .

1 : (r − 1)

(I − 2DT)σ = 0
det(I − 2DT) = 0 κ

ω

κ

𝒥p( ⃗x, κ) =
∞

∑
n=−∞

δ(x1 − nd)δ(x2)einκ

𝒥( ⃗x) =
1

2π ∫
π

−π
𝒥p( ⃗x, κ)dκ .

κ κ = [−π, π]

Fig. 2. Dispersion relation, frequency  against 
horizontal wavenumber , for trapped modes 
within the first Brillouin zone.
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Fig. 4. Group velocity, , computed 

from the dispersion relation, as a function of 
horizontal wavenumber .
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Fig. 5. Arrival time of modes of given frequencies 
at a given distance along a staircase modeled 
after El Castillo.

Fig. 3. Trapped surface wave at , the edge of the first Brillouin zone. 
This is the most trapped mode, i.e. with thhe shortest vertical decay length.
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Fig. 6. Total field from an array of point sources, their positions marked by 
stars. We set , .ω = 3 κ = 1.5
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