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The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)
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Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,

• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral
method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods
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Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[ first row of D ]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.
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The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.

4In the sense that its logarithm’s Fourier transform decays rapidly.
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Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x ](t) := R[x ] = x ′ + x2 + ω2, then

0 = R[xj + δ] =

R[xj ] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0.

After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj ](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).
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Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]
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Geometric convergence of the residual, R[xj ], for a while: a theorem

Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ
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Geometric convergence of the residual, R[xj ], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ
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Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj ]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid
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Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
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Examples I: Airy equation, u′′ + ut = 0

• κ is condition
number: sensitivity
of the ODE to
perturbations
(Trefethen and
Bau III (1997)).
We approximate it
as the total
accumulated
phase.

• The best
attainable error is
then κ · εmach,
where εmach is
machine precision
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Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).
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Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)
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Software

• Open-source, unit tested, documented, with executable tutorials

• Easy install: pip or conda(-forge)

• Published in JOSS (Journal of open-source software)
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Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?
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Thank you!
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WKB expansion /1
• Alternatively, build nonoscillatory (approx) solution: WKB/Riccati defect correction

• Wentzel–Kramers–Brillouin (WKB) expansion:
Extract a small parameter 1/ω0: let ω(t) = ω0Ω(t), ω0 ≫ 1, Ω(t) unit size,

u′′(t) + ω2
0Ω(t)

2u(t) = 0

for both real and imag ω, u has exp behavior, so transform as z(t) = eω0z(t), z ′(t) = x(t),

x ′ + ω0x
2 + ω0Ω

2 = 0,

then expand as power series in small param,

xj(t) =

j∑
l=0

ω−l
0 sl(t)

match powers of ω0, then ”reabsorb”: set ω0 = 1. Get

s0 = ±iω, sl+1 = − 1

2s0

(
s ′l +

l∑
k=1

sksl+1−k

)
,

22 / 27



WKB expansion /2

• Usually applied analytically, used in
quantum mechanics

• Recursion relation involves all previous
terms → hard to analyze

• Asymptotic

• First few iterations of series (start from
+iω):

x0 = iω,

x1 = iω − ω′

2ω
,

x2 = iω − ω′

2ω
+ i

3ω′2

ω3
− i

ω′′

4ω2
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u
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analytic sol

WKB, j = 0
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Some state-of-the-art oscillatory solvers

ARDC/this work
Agocs and Barnett (2022)

Kummer’s phase
function method

Bremer, ACHA (2018)

oscode

Agocs, Handley, et al., Phys Rev Research (2020)
WKB marching

Körner et al., JCAM (2022)

high-order?

γ? 5

code? Python Fortran 90 Python/C++ MATLAB

misc need ω′, ω′′, . . . , d
5ω
dt5

5Bremer, ACHA (2023) can be applied in this case, but no code → no comparison.
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Comparison with standard & state-of-the-art solvers, convergence

• We used the
Kummer’s phase
function method to
compute a reference
solution, therefore its
reported accuracy
(relative to spectral
deferred correction), in
grey shading, is an
upper limit on the
error

101 102 103 104 105 106 107

λ

10−12

10−10

10−8

10−6

10−4
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100
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re
la

ti
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|∆
u
/
u
|

RK78

oscode

WKB marching

Kummer’s phase function

ARDC

ε = 10−12

ε = 10−6
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Motivation

• This ODE is extremely common
in physics and math

• inflationary cosmology
• ≈ 109 oscillatory ODE

solves

• 1D quantum mechanics

• plasma physics, Hamiltonian
dynamics, particle
accelerators, electric circuits,
acoustic and gravitational
waves, . . .

• special function evaluation

θ1

θ2

P(θ⃗|D,M)

need 106

posterior points

θ⃗ = {H0,Ωb, . . .}
cosmological
parameters

k ≈ ω

|Rk |2
≈

|amplitude|2
each point is an

oscillatory ODE solve

Total of ≈ 103 solves

forward modelling

Bayes
P(θ⃗|D,M) =

P(D|θ⃗,M) · P(θ⃗|M)
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The nonoscillatory phase function /2

• Most solutions for the Riccati equation (x(t)) oscillate with 2ω

• Example: ω = ω0, analytic solution: x(t) = ω0 tan(β − ω0t), only Imβ → ±∞ gives nonosc. x(t) = ±iω0
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