
An adaptive spectral method for oscillatory
second-order linear ODEs with
frequency-independent cost

Fruzsina Agocs1 with Alex Barnett1

1Center for Computational Mathematics, Flatiron Institute, Simons Foundation

ICIAM Tokyo, August 2023

arxiv:2212.06924 (accepted to SINUM)

1 / 27

https://arxiv.org/abs/2212.06924

Acknowledgements

Thanks to:

Alex Barnett Manas Rachh Jim Bremer Charlie Epstein

2 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:

• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:
• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:
• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

The problem

• Interested in solving the initial value problem

u′′(t) + 2γ(t)u′(t) + ω2(t)u(t) = 0, t ∈ [t0, t1]

with u(t0) = u0, u′(t0) = u′0.

• ω(t), γ(t) real-valued and ω(t) ≥ 0

• When ω ≫ 1, u(t) is oscillatory, conventional ODE solvers need discretization with O(ω)
steps → slow,

• Some efficient numerical solvers exist1 (more about them later)

• But none have all of the following properties:
• Efficient when ω ≫ 1 or ω ⪅ 1 (solution is oscillatory or non-oscillatory),

• Works in the more general case of γ(t) ̸= 0,

• Is arbitrarily high-order.

1Agocs, Handley, et al., Phys Rev Research (2020), Bremer, ACHA (2018), Bremer, ACHA (2023), Körner
et al., JCAM (2022), Petzold, SINUM (1981) (oscode)

3 / 27

Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,

• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral
method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods

4 / 27

Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,

• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral
method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods

4 / 27

Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,
• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral

method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods

4 / 27

Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,
• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral

method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods

4 / 27

Method overview

• Time-stepping with adaptive stepsize, keep local error below tolerance ε

• Right strategy is to exploit known properties/behavior of the solution

• Two different methods for when u(t) oscillatory and slowly-varying,
• ω ⪅ 1: Spectral collocation method based on Chebyshev nodes, “Chebyshev/spectral

method”

• ω ≫ 1: Asymptotic expansion of nonoscillatory phase function, “Riccati/asymptotic
method”

• Automatic switching between the methods

4 / 27

Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[first row of D]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.

5 / 27

Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[first row of D]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.
5 / 27

Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[first row of D]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.
5 / 27

Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[first row of D]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.
5 / 27

Spectral collocation on Chebyshev nodes

• Timestepping from ti to ti+1 = ti + h

• Discretize ODE2over [ti , ti + h] via an n-point
Chebyshev grid:[

D2 + diag(ω2(t))
]
u = 0

ti ti + h

f Df

• To this n × n system, add two rows encoding initial conditions:

[1, 0, 0, 0, . . .]u = ui

[first row of D]u = u′i

• Solve the system (least sq)

• Get error estimate from repeating the step with 2n Chebyshev points and comparing
un(ti+1) with u2n(ti+1). Typically, n = 16.

2We set γ(t) = 0 for simplicity.
5 / 27

The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.

4In the sense that its logarithm’s Fourier transform decays rapidly.

6 / 27

The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.

4In the sense that its logarithm’s Fourier transform decays rapidly.

6 / 27

The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.
4In the sense that its logarithm’s Fourier transform decays rapidly.

6 / 27

The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.
4In the sense that its logarithm’s Fourier transform decays rapidly.

6 / 27

The nonoscillatory phase function

• Rewrite u′′ + ω2u = 0 3 using u = ez , and z ′(t) = x(t):

x ′(t) + x2(t) + ω2(t) = 0, (Riccati)

• Most solutions x(t) (the phase function) are oscillatory → brute-force solution not feasible

• But Heitman et al., JCP (2015): there exist nonoscillatory4 x(t) for analytic ω(t)

• Bremer, ACHA (2018) (the Kummer’s phase function method) build an oscillatory solver by
finding the appropriate initial conditions that yield a nonoscillatory x(t)

• Algorithm is complex and only works if ω(t) is large

3Again setting γ(t) = 0.
4In the sense that its logarithm’s Fourier transform decays rapidly.

6 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 = R[xj + δ] =

R[xj] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0.

After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] = R[xj] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0.

After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] = R[xj] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0.

After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 = R[xj + δ] = R[xj] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0.

After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj] + δ′ + 2xjδ +O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj] + δ′ + 2xjδ

+O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj]

+ δ′

+ 2xjδ

+O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj]

+ δ′

+ 2xjδ

+O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj]

+ δ′

+ 2xjδ

+O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Riccati defect correction
• This work: construct approximate, nonoscillatory x(t) by functional iteration.

x0(t), x1(t), . . . , xj(t) forms an asymptotic series.

• If ω ≫ 1, approximate nonoscillatory solutions x(t) ≈ ±iω(t) → let x0 := ±iω

• Define residual of Riccati eq. as

R[x](t) := R[x] = x ′ + x2 + ω2, then

0 =

R[xj + δ] =

R[xj]

+ δ′

+ 2xjδ

+O(δ2)

• Seek a δ giving R ≡ 0. After linearisation, δ solves an ODE which again is generally oscillatory

• But if δ nonoscillatory, δ′ is O(ω) smaller than other terms → neglect,

• Get Newton-like, functional defect correction scheme:

xj+1(t) = xj(t)− R[xj](t)

2xj(t)
for all t ∈ [ti , ti+1]

• Check: if x = O(ω), ω′ = O(ω), then

x0 = iω, R[x0] = iω′ = O(ω),

x1 = iω − ω′

2ω
, R[x1] = −ω′′

2ω
+

3(ω′)2

4ω2
= O(1).

7 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

−20 −10 0 10 20

t

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

u
(t

)

ωmax =
√

102 − 1

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

−2 −1 0 1 2 3 4 5

t

−0.04

−0.02

0.00

0.02

0.04

u
(t

)

ωmax =
√

102 − 1

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

ωmax =
√

102 − 1

∝ ω−jmax

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

ωmax =
√

102 − 1

ωmax =
√

104 − 1

∝ ω−jmax

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

∝ ω−jmax

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

∝ ω−jmax

8 / 27

Empirical residual drop, u′′ + m2−1
(1+t2)2u = 0

Here, ωmax = maxt∈[ti ,ti+1] ω(t), [ti , ti+1] = [0, 0.5]

0.0 0.2 0.4

t

101

102

103

104

ω
(t

)

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

0 2 4 6 8 10

iteration number, j

10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

m
a

xi
m

u
m

re
si

d
u

a
l,

m
a
x

t∈
[0
,0
.5

]
R

[x
j
]

ωmax =
√

102 − 1

ωmax =
√

104 − 1

ωmax =
√

106 − 1

ωmax =
√

108 − 1

∝ ω−jmax

ω(t) = const. = ωmin

8 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem

Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: a theorem
Theorem

Let ω be analytic in the closed ball Bρ := {z ∈ C : |z − t| ≤ ρ} centered on a given t.
Then for j = 1, 2, . . . , k,

Rj(t) ≤ Ar j

with
r(|ω′|Bρ , |ω|Bρ , k).

Meaning:

• If |ω′|/|ω| is small in Bρ,

• and |ω| is large in Bρ,

• then geometric convergence up to j ≤ k iterations.

• Note: The theorem generalises to the γ(t) ̸= 0 case by
introducing an upper bound on γ.

t

Bρ

Re(z)

Im(z)

ρ

9 / 27

Geometric convergence of the residual, R[xj], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ

10 / 27

Geometric convergence of the residual, R[xj], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ

10 / 27

Geometric convergence of the residual, R[xj], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ

10 / 27

Geometric convergence of the residual, R[xj], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ

10 / 27

Geometric convergence of the residual, R[xj], for a while: proof

Proof:

• Write down residual iteration (R[xj+1] := Rj+1 in terms of Rj):

Rj+1 =
1

2xj

(
x ′
j

xj
Rj − R ′

j

)
+

(
Rj

2xj

)2

.

• Define the concentric nested set of closed balls Bj = Bρj (t), with
radii ρj = (1− j/k)ρ, j = 0, 1, . . . , k

• Bound f ′ in Bj+1 in terms of ||f ||j = maxz∈Bj |f (z)| by using
Cauchy’s theorem for derivatives,

• Prove by induction that for iteration j ,

η̃1 ≤|xl | ≤ η̃2 in Bj , for all l = 0, 1, . . . , j ,

|Rl | ≤ η3r
l in Bj , for all l = 0, 1, . . . , j .

t
B2

B1

B0

case k = 3

Re(t)

Im(t)

ρ

10 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Methods II: asymptotic expansion /3

• Once we have xj , transform back:

u(t) = e
∫ t xj (σ)dσ

• Two solutions for xj : xj± (starting from ±iω) give linearly independent solutions for u, u±

• Linearly combine to match initial conditions at the start of each timestep:

u(ti+1) = Au+ + Bu−, u′(ti+1) = Au′+ + Bu′−

• Error estimate is via residual R[xj]. Fix stepsize, iterate over j .

• Derivatives and integral via spectral differentiation / integration matrix (n = 16, 32) →
stepsize determined only by how well ω, γ are represented on a Chebyshev grid

11 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step

3.1 Iterate over k to check if Riccati series
converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step
3.1 Iterate over k to check if Riccati series

converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step
3.1 Iterate over k to check if Riccati series

converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?

Chebyshev step
in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step
3.1 Iterate over k to check if Riccati series

converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step
3.1 Iterate over k to check if Riccati series

converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Algorithm overview

In stepping from ti to ti+1 = ti + h:

1. Get initial stepsize estimate

2. Refine stepsize estimate

3. Decide whether to attempt Riccati step
3.1 Iterate over k to check if Riccati series

converges

3.2 If it does, accept it

3.3 If it doesn’t or solution not oscillatory enough,
take Chebyshev step (iterate over n, hslo if
needed)

4. Advance time ti → ti+1, and numerical
solution

h
(0)
slo = 1

ω(ti)
h
(0)
osc =

ω(ti)
ω′(ti)

hslo hosc

hosc > hslo
and

ω(ti)hosc/(2π) > 1

Riccati step in x(t)

Converged?
Chebyshev step

in u(t)

Compute u from x ,
match u(ti), u

′(ti)

Advance solution: ti+1 = ti + h,
u(ti+1) = u(ti + h), u′(ti+1) = u′(ti + h)

TrueFal
se

T
ru
e

False

12 / 27

Examples I: Airy equation, u′′ + ut = 0

• κ is condition
number: sensitivity
of the ODE to
perturbations
(Trefethen and
Bau III (1997)).
We approximate it
as the total
accumulated
phase.

• The best
attainable error is
then κ · εmach,
where εmach is
machine precision

13 / 27

Examples I: Airy equation, u′′ + ut = 0

• κ is condition
number: sensitivity
of the ODE to
perturbations
(Trefethen and
Bau III (1997)).
We approximate it
as the total
accumulated
phase.

• The best
attainable error is
then κ · εmach,
where εmach is
machine precision

100 101
−0.50

−0.25

0.00

0.25

0.50

0.75

<
(u

(t
))

analytic solution

Chebyshev step

Riccati step

100 103 106

101

103

105

107

st
ep

si
ze

,
h

∝ t

100 103 106

t

10−14

10−11

10−8

10−5

re
la

ti
ve

er
ro

r,
|∆
u
/
u
| ε

κ · εmach

100 103 106

t

102

105

108

1011

n
o
sc

p
er

st
ep

∝ t
3
2

13 / 27

Examples I: Airy equation, u′′ + ut = 0

• κ is condition
number: sensitivity
of the ODE to
perturbations
(Trefethen and
Bau III (1997)).
We approximate it
as the total
accumulated
phase.

• The best
attainable error is
then κ · εmach,
where εmach is
machine precision

100 101
−0.50

−0.25

0.00

0.25

0.50

0.75

<
(u

(t
))

analytic solution

Chebyshev step

Riccati step

100 103 106

101

103

105

107

st
ep

si
ze

,
h

∝ t

100 103 106

t

10−14

10−11

10−8

10−5

re
la

ti
ve

er
ro

r,
|∆
u
/
u
| ε

κ · εmach

100 103 106

t

102

105

108

1011

n
o
sc

p
er

st
ep

∝ t
3
2

13 / 27

Examples I: Airy equation, u′′ + ut = 0

• κ is condition
number: sensitivity
of the ODE to
perturbations
(Trefethen and
Bau III (1997)).
We approximate it
as the total
accumulated
phase.

• The best
attainable error is
then κ · εmach,
where εmach is
machine precision

100 101
−0.50

−0.25

0.00

0.25

0.50

0.75

<
(u

(t
))

analytic solution

Chebyshev step

Riccati step

100 103 106

101

103

105

107

st
ep

si
ze

,
h

∝ t

100 103 106

t

10−14

10−11

10−8

10−5

re
la

ti
ve

er
ro

r,
|∆
u
/
u
| ε

κ · εmach

100 103 106

t

102

105

108

1011

n
o
sc

p
er

st
ep

∝ t
3
2

13 / 27

Adaptivity check (using the Airy equation)

14 / 27

Adaptivity check (using the Airy equation)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

tolerance, ε

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

14 / 27

Adaptivity check (using the Airy equation)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

tolerance, ε

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

t1 = 102

κ · εmach

14 / 27

Adaptivity check (using the Airy equation)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

tolerance, ε

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

t1 = 102

t1 = 103

κ · εmach

14 / 27

Adaptivity check (using the Airy equation)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

tolerance, ε

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

t1 = 102

t1 = 103

t1 = 104

κ · εmach

14 / 27

Adaptivity check (using the Airy equation)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

tolerance, ε

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

t1 = 102

t1 = 103

t1 = 104

t1 = 105

κ · εmach

14 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t

)

λ = 200

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,

oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

ε = 10−12

ε = 10−6

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),

WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

RK78

ε = 10−12

ε = 10−6

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),

Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

RK78

oscode

ε = 10−12

ε = 10−6

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

RK78

oscode

WKB marching

ε = 10−12

ε = 10−6

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

RK78

oscode

WKB marching

Kummer’s phase function

ε = 10−12

ε = 10−6

15 / 27

Comparison with standard & state-of-the-art solvers, performance

• u′′ + λ2q(t)u = 0,
q(t) = 1− t2 cos(3t),
t ∈ [−1, 1].

• RK78: Runge–Kutta,
oscode: Agocs,
Handley, et al., Phys
Rev Research (2020),
WKB marching: Körner
et al., JCAM (2022),
Kummer’s phase
function: Bremer,
ACHA (2018).

101 102 103 104 105 106 107

λ

10−2

100

102

104

ru
n

ti
m

e/
s,
t s

o
lv

e

RK78

oscode

WKB marching

Kummer’s phase function

ARDC

ε = 10−12

ε = 10−6

15 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)

• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)
• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)
• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Current applications

• Cosmology (previously unable to investigate these models because of costly oscillatory
solve)

• closed universe models: Hergt, Agocs, et al., Phys Rev D (2022)

• inference of primordial initial conditions: Agocs, Hergt, et al., Phys Rev D (2020), Letey,
Shumaylov, Agocs, et al. (2022)

• Evaluation of special functions (e.g. Legendre polynomials of high order)
• Possible because code is capable of dense output

• ν = 101-109, solve: O(10−3) s, eval/dense output: O(10−6) s/point on a laptop, single core

• Quadrature of highly oscillatory functions (work in progress)

16 / 27

Software

• Open-source, unit tested, documented, with executable tutorials

• Easy install: pip or conda(-forge)

• Published in JOSS (Journal of open-source software)

17 / 27

https://github.com/fruzsinaagocs/riccati

Software

• Open-source, unit tested, documented, with executable tutorials

• Easy install: pip or conda(-forge)

• Published in JOSS (Journal of open-source software)

17 / 27

https://github.com/fruzsinaagocs/riccati

Software

• Open-source, unit tested, documented, with executable tutorials

• Easy install: pip or conda(-forge)

• Published in JOSS (Journal of open-source software)

17 / 27

https://github.com/fruzsinaagocs/riccati

Software

• Open-source, unit tested, documented, with executable tutorials

• Easy install: pip or conda(-forge)

• Published in JOSS (Journal of open-source software)

17 / 27

https://github.com/fruzsinaagocs/riccati

Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?

18 / 27

Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?

18 / 27

Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?

18 / 27

Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?

18 / 27

Future outlook & conclusions

• An efficient method for solving linear, 2nd order ODEs, with a frequency term that may be
large

• Unique: asymptotic methods applied numerically, spectral accuracy, can deal with
oscillatory or slowly-varying regions, works in presence of friction term

• Asymptotic expansions reduce the residual very quickly, up until a certain iteration/term

• Could we generalise the method to ODE systems? PDEs?

18 / 27

Thank you!

19 / 27

References I

F. J. Agocs and A. H. Barnett (2022). An adaptive spectral method for oscillatory second-order linear
ODEs with frequency-independent cost. doi: 10.48550/ARXIV.2212.06924. url:
https://arxiv.org/abs/2212.06924.

F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson (2020). “Efficient method for solving highly
oscillatory ordinary differential equations with applications to physical systems”. In: Phys Rev Research 2.1,
p. 013030.

F. J. Agocs, L. T. Hergt, W. J. Handley, A. N. Lasenby, and M. P. Hobson (2020). “Quantum initial
conditions for inflation and canonical invariance”. In: Phys Rev D 102.2. issn: 2470-0029. doi:
10.1103/physrevd.102.023507. url: http://dx.doi.org/10.1103/physrevd.102.023507.

J. Bremer (2018). “On the numerical solution of second order ordinary differential equations in the
high-frequency regime”. In: ACHA 44.2, pp. 312–349.

— (2023). “Phase function methods for second order linear ordinary differential equations with turning
points”. In: ACHA 65, pp. 137–169. issn: 1063-5203. doi:
https://doi.org/10.1016/j.acha.2023.02.005. url:
https://www.sciencedirect.com/science/article/pii/S1063520323000210.

Z. Heitman, J. Bremer, and V. Rokhlin (2015). “On the existence of nonoscillatory phase functions for
second order ordinary differential equations in the high-frequency regime”. In: JCP 290, pp. 1–27.

20 / 27

https://doi.org/10.48550/ARXIV.2212.06924
https://arxiv.org/abs/2212.06924
https://doi.org/10.1103/physrevd.102.023507
http://dx.doi.org/10.1103/physrevd.102.023507
https://doi.org/https://doi.org/10.1016/j.acha.2023.02.005
https://www.sciencedirect.com/science/article/pii/S1063520323000210

References II

L. T. Hergt, F. J. Agocs, W. J. Handley, M. P. Hobson, and A. N. Lasenby (2022). “Finite inflation in
curved space”. In: Phys Rev D 106.6. issn: 2470-0029. doi: 10.1103/physrevd.106.063529. url:
http://dx.doi.org/10.1103/physrevd.106.063529.

J. Körner, A. Arnold, and K. Döpfner (2022). “WKB-based scheme with adaptive step size control for the
Schrödinger equation in the highly oscillatory regime”. In: JCAM 404, p. 113905.

M. I. Letey, Z. Shumaylov, F. J. Agocs, W. J. Handley, M. P. Hobson, and A. N. Lasenby (2022).
Quantum Initial Conditions for Curved Inflating Universes. arXiv: 2211.17248 [gr-qc].

L. R. Petzold (1981). “An efficient numerical method for highly oscillatory ordinary differential equations”.
In: SINUM 18.3, pp. 455–479.

L. N. Trefethen and D. Bau III (1997). Numerical linear algebra. Vol. 50. SIAM.

21 / 27

https://doi.org/10.1103/physrevd.106.063529
http://dx.doi.org/10.1103/physrevd.106.063529
https://arxiv.org/abs/2211.17248

WKB expansion /1
• Alternatively, build nonoscillatory (approx) solution: WKB/Riccati defect correction

• Wentzel–Kramers–Brillouin (WKB) expansion:
Extract a small parameter 1/ω0: let ω(t) = ω0Ω(t), ω0 ≫ 1, Ω(t) unit size,

u′′(t) + ω2
0Ω(t)

2u(t) = 0

for both real and imag ω, u has exp behavior, so transform as z(t) = eω0z(t), z ′(t) = x(t),

x ′ + ω0x
2 + ω0Ω

2 = 0,

then expand as power series in small param,

xj(t) =

j∑
l=0

ω−l
0 sl(t)

match powers of ω0, then ”reabsorb”: set ω0 = 1. Get

s0 = ±iω, sl+1 = − 1

2s0

(
s ′l +

l∑
k=1

sksl+1−k

)
,

22 / 27

WKB expansion /2

• Usually applied analytically, used in
quantum mechanics

• Recursion relation involves all previous
terms → hard to analyze

• Asymptotic

• First few iterations of series (start from
+iω):

x0 = iω,

x1 = iω − ω′

2ω
,

x2 = iω − ω′

2ω
+ i

3ω′2

ω3
− i

ω′′

4ω2

−0.5

0.0

0.5

1.0

u
(t

)

analytic sol

WKB, j = 0

0 10 20 30

t

10−7

10−5

10−3

10−1

|er
ro

r|
23 / 27

WKB expansion /2

• Usually applied analytically, used in
quantum mechanics

• Recursion relation involves all previous
terms → hard to analyze

• Asymptotic

• First few iterations of series (start from
+iω):

x0 = iω,

x1 = iω − ω′

2ω
,

x2 = iω − ω′

2ω
+ i

3ω′2

ω3
− i

ω′′

4ω2

−0.5

0.0

0.5

1.0

u
(t

)

analytic sol

WKB, j = 1

0 10 20 30

t

10−7

10−5

10−3

10−1

|er
ro

r|
23 / 27

WKB expansion /2

• Usually applied analytically, used in
quantum mechanics

• Recursion relation involves all previous
terms → hard to analyze

• Asymptotic

• First few iterations of series (start from
+iω):

x0 = iω,

x1 = iω − ω′

2ω
,

x2 = iω − ω′

2ω
+ i

3ω′2

ω3
− i

ω′′

4ω2

−0.5

0.0

0.5

1.0

u
(t

)

analytic sol

WKB, j = 2

0 10 20 30

t

10−7

10−5

10−3

10−1

|er
ro

r|
23 / 27

WKB expansion /2

• Usually applied analytically, used in
quantum mechanics

• Recursion relation involves all previous
terms → hard to analyze

• Asymptotic

• First few iterations of series (start from
+iω):

x0 = iω,

x1 = iω − ω′

2ω
,

x2 = iω − ω′

2ω
+ i

3ω′2

ω3
− i

ω′′

4ω2

−0.5

0.0

0.5

1.0

u
(t

)

analytic sol

WKB, j = 3

0 10 20 30

t

10−7

10−5

10−3

10−1

|er
ro

r|
23 / 27

Some state-of-the-art oscillatory solvers

ARDC/this work
Agocs and Barnett (2022)

Kummer’s phase
function method

Bremer, ACHA (2018)

oscode

Agocs, Handley, et al., Phys Rev Research (2020)
WKB marching

Körner et al., JCAM (2022)

high-order?

γ? 5

code? Python Fortran 90 Python/C++ MATLAB

misc need ω′, ω′′, . . . , d
5ω
dt5

5Bremer, ACHA (2023) can be applied in this case, but no code → no comparison.
24 / 27

Comparison with standard & state-of-the-art solvers, convergence

• We used the
Kummer’s phase
function method to
compute a reference
solution, therefore its
reported accuracy
(relative to spectral
deferred correction), in
grey shading, is an
upper limit on the
error

101 102 103 104 105 106 107

λ

10−12

10−10

10−8

10−6

10−4

10−2

100

102

re
la

ti
ve

er
ro

r,
|∆
u
/
u
|

RK78

oscode

WKB marching

Kummer’s phase function

ARDC

ε = 10−12

ε = 10−6

25 / 27

Motivation

• This ODE is extremely common
in physics and math

• inflationary cosmology
• ≈ 109 oscillatory ODE

solves

• 1D quantum mechanics

• plasma physics, Hamiltonian
dynamics, particle
accelerators, electric circuits,
acoustic and gravitational
waves, . . .

• special function evaluation

θ1

θ2

P(θ⃗|D,M)

need 106

posterior points

θ⃗ = {H0,Ωb, . . .}
cosmological
parameters

k ≈ ω

|Rk |2
≈

|amplitude|2
each point is an

oscillatory ODE solve

Total of ≈ 103 solves

forward modelling

Bayes
P(θ⃗|D,M) =

P(D|θ⃗,M) · P(θ⃗|M)

26 / 27

The nonoscillatory phase function /2

• Most solutions for the Riccati equation (x(t)) oscillate with 2ω

• Example: ω = ω0, analytic solution: x(t) = ω0 tan(β − ω0t), only Imβ → ±∞ gives nonosc. x(t) = ±iω0

27 / 27

The nonoscillatory phase function /2

• Most solutions for the Riccati equation (x(t)) oscillate with 2ω

• Example: ω = ω0, analytic solution: x(t) = ω0 tan(β − ω0t), only Imβ → ±∞ gives nonosc. x(t) = ±iω0

27 / 27

The nonoscillatory phase function /2

• Most solutions for the Riccati equation (x(t)) oscillate with 2ω

• Example: ω = ω0, analytic solution: x(t) = ω0 tan(β − ω0t), only Imβ → ±∞ gives nonosc. x(t) = ±iω0

0.00 0.25 0.50 0.75 1.00

t

3

4

5

6

7

8

9

10

11

12

x
(t

)

β = i

β = 20i

iω0

0.00 0.25 0.50 0.75 1.00

t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u
(t

)

27 / 27

	References

