Trapped acoustic waves and raindrops: High-order integral equation solution of the localized excitation of a periodic staircase

Fruzsina J Agocs

Center for Computational Mathematics, Flatiron Institute
With Alex Barnett, thanks to: Manas Rachh (FI), Leslie Greengard (FI), Eric Heller (Harvard)

SIAM NNP annual meeting, 10/22/2023

Scattering of a nonperiodic source from a periodic, corrugated surface

Questions, goals, and applications

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
- Sound travels "down" along stairs \rightarrow trapped modes, propagating horizontally, evanescent perpendicular to stairs
- Echo from footsteps sound like raindrops (Cruz et al, Acta Acustica, 2009)
- When do trapped modes exist? What is their dispersion relation?
- Compute single-frequency solution from single point excitation
- How does power in the system get distributed between trapped modes and outgoing radiation?
- Periodic surfaces have been exploited for their waveguiding properties:
- Photonic crystals, acoustic metamaterials, diffraction gratings, antennae, anechoic chambers, amphitheaters, ...
- Fast, robust methods needed in optimization loops
- \rightarrow Our method can have impact in the above applications

El Castillo ("The Castle"),
a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Why is this problem hard? Previous and new work

What's hard about this problem?

- Domain is infinite
- Periodic boundary \rightarrow cannot truncate due to artificial reflections
- Nonperiodic source breaks periodicity \rightarrow cannot reduce to single unit cell* (periodization)
- Corners introduce singularities

Previous work and what we are doing

- Finite differencing or finite elements methods
- Mesh-free methods: method of fundamental solutions, plane waves method
- Rayleigh methods based on the Rayleigh hypothesis
- Approximations, e.g. Helmholtz-Kirchhoff

- First high-order accurate scattering of a nonperiodic source from a periodic surface with corners: arXiv:2310.12486 (with Alex Barnett)
- Boundary integral equation \& method: $\mathcal{O}(N)$ instead of $\mathcal{O}\left(N^{2}\right)$, can deal with singularities and be accurate via high-order quadrature

Problem setup - quasiperiodic set of sources

$$
\begin{aligned}
-\left(\Delta+\omega^{2}\right) u & =\sum_{n=-\infty}^{\infty} e^{i n \kappa d} \delta\left(\mathbf{x}-\mathbf{x}_{0}-n \mathbf{d}\right) & & \text { in } \Omega \\
u_{n} & =0 & & \text { on } \partial \Omega \\
u\left(x_{1}+n d, x_{2}\right) & =\alpha^{n} u\left(x_{1}, x_{2}\right) & & \left(x_{1}, x_{2}\right) \in \Omega \\
u\left(x_{1}, x_{2}\right) & =\sum_{n \in \mathbb{Z}} c_{n} e^{i\left(k_{n} x_{1}+k_{n} x_{2}\right)}, & & x_{2}>x_{2}^{0}
\end{aligned}
$$

PDE (Helmholtz)
boundary condition (Neu)
quasiperiodicity
radiation condition

- $\mathbf{x}=\left(x_{1}, x_{2}\right)$ position vector, $\mathbf{d}=(d, 0)$ lattice vector.
- u_{i} is the incident, u_{s} is the scattered wave
- $u=u_{i}+u_{s}$ is the total solution
- κ is the horizontal (on-surface) wavenumber
- $u_{n}:=\mathbf{n} \cdot \nabla u$ normal derivative in the outward sense
- If there are multiple sources, quasiperiodicity condition ensures the solution obeys the symmetry of the boundary
- The solution accrues an overall (Bloch) phase $\alpha=e^{i \kappa}$ over one period d.
- Set of possible horizontal wavevectors $\kappa_{n}=\kappa+2 \pi n / d$, $n \in \mathbb{Z}$, all lead to the same quasiperiodicity
- If the total wavevector is $\mathbf{k}=\left(\kappa_{n}, k_{n}\right)$, then $k_{n}=\sqrt{\omega^{2}-\kappa_{n}^{2}}$ is the vertical wavevector (imaginary part always +ve)
- Vertically propagating or evanescent
- $k_{n}=0$ are Wood anomalies (abrupt change in behavior)

Boundary integral formulation

- Use a single-layer potential (SLP) representation for the scattered wave:

$$
u_{s}(\mathbf{x})=\mathcal{S} \sigma=\int_{\Gamma} \Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \mathrm{d} s_{\mathbf{y}}, \quad \mathbf{x} \in \mathbb{R}^{2}
$$

ensures u will satisfy the PDE.

- Using the appropriate jump relations, this gives the Fredholm integral equation

$$
\left(I-2 D^{\mathrm{T}}\right) \sigma=-2 f \quad \text { on } \Gamma,
$$

where $f=-\left.\left(u_{i}\right)_{n}\right|_{\Gamma}$ is the boundary data, and σ is the unknown density, and

$$
D^{\mathrm{T}}=\int_{\Gamma} \mathbf{n}_{\mathbf{x}} \cdot \nabla \Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \mathrm{d} s_{\mathbf{y}} \quad \text { on } \Gamma .
$$

- Solve by discretizing the integral eq with Nystrom's method:
if $v_{i}^{(N)}=\left\{\left(u_{n}\right)_{i}\right\}_{i=1}^{N}$ are the values of u_{n} at a set of quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$ on
the boundary with weights $\left\{w_{i}\right\}_{i=1}^{N}$, then

$$
v_{i}^{(N)}-\sum_{j=1}^{N} w_{j} \Phi_{\mathrm{p}}\left(s_{i}, s_{j}\right) v_{j}^{(N)}=f\left(s_{i}\right), \quad \forall i=1,2, \ldots, N
$$

v is the density σ evaluated on the boundary nodes.

- u can then be reconstructed anywhere using the SLP.

$$
u_{s}(t)=\sum_{j=1}^{N} w_{j} \Phi_{\mathrm{p}}\left(t, s_{j}\right) v_{j}^{(N)}
$$

Boundary integral formulation

$\Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y})$

- Use a single-layer potential (SLP) representation for the scattered wave:

$$
u_{s}(\mathbf{x})=\mathcal{S} \sigma=\int_{\Gamma} \Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \mathrm{d} s_{\mathbf{y}}, \quad \mathbf{x} \in \mathbb{R}^{2}
$$

ensures u will satisfy the PDE.

- Using the appropriate jump relations, this gives the Fredholm integral equation

$$
\left(I-2 D^{\mathrm{T}}\right) \sigma=-2 f \quad \text { on } \Gamma
$$

where $f=-\left.\left(u_{i}\right)_{n}\right|_{\Gamma}$ is the boundary data, and σ is the unknown density, and

$$
D^{\mathrm{T}}=\int_{\Gamma} \mathbf{n}_{\mathbf{x}} \cdot \nabla \Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \mathrm{d} s_{\mathbf{y}} \quad \text { on } \Gamma .
$$

- Solve by discretizing the integral eq with Nystrom's method:
if $v_{i}^{(N)}=\left\{\left(u_{n}\right)_{i}\right\}_{i=1}^{N}$ are the values of u_{n} at a set of quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$ on
the boundary with weights $\left\{w_{i}\right\}_{i=1}^{N}$, then

$$
v_{i}^{(N)}-\sum_{j=1}^{N} w_{j} \Phi_{\mathrm{p}}\left(s_{i}, s_{j}\right) v_{j}^{(N)}=f\left(s_{i}\right), \quad \forall i=1,2, \ldots, N
$$

v is the density σ evaluated on the boundary nodes.

- u can then be reconstructed anywhere using the SLP.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

$$
u_{s}(t)=\sum_{j=1}^{N} w_{j} \Phi_{\mathrm{p}}\left(t, s_{j}\right) v_{j}^{(N)}
$$

Periodization

- Reduce computation to the unit cell by using
the quasiperiodic Green's function,
$\Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{y})$, where \mathbf{x} is the target's, \mathbf{y} is the
$|n| \leq 1:$ near field, direct summation
source's position vector:
$-\left(\Delta+\omega^{2}\right) \Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{0})=\sum_{n=-\infty}^{\infty} \alpha^{n} \delta\left(x_{1}-n d\right) \delta\left(x_{2}\right)$
$\Phi_{\mathrm{p}}(\mathbf{x}, \mathbf{0})=\frac{i}{4} \sum_{n=-\infty}^{\infty} \alpha^{n} H_{0}^{(1)}\left(\omega \sqrt{\left(x_{1}-n d\right)^{2}+x_{2}^{2}}\right)$

- The $S_{n}(\omega, \kappa)$ are lattice sums involving sums over n-th order Hankel
$|n|>1$: far field,
Neumann series: functions
- Computed once per ω, κ

$$
\Phi_{\mathrm{p}, \mathrm{far}}(\mathbf{x}, 0)=\frac{i}{4}\left[S_{0}(\omega, \kappa) J_{0}(\omega, \mathbf{x})+2 \sum_{n=1}^{\infty} S_{n}(\omega, \kappa) J_{n}(\omega, \mathbf{x}) a(\mathbf{x})\right]
$$

- Slowly convergent \rightarrow use integral representation (Yasumoto and Yoshitomi, IEEETAP, 1999)
- Only convergent in a disc \rightarrow only use it inside unit cell

Boundary integral formulation; quadrature

- How to choose the quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:

1. Lay down some equally sized initial panels
2. Split corner-adjacent panels in a $1:(r-1)$ ratio ($r=2$, dyadic refinement shown)
3. Lay down Gauss-Legendre quadrature nodes on panels.

- Quadrature coordinates relative to the nearest corner to avoid catastrophic cancellation
- No special rules (yet) for close evaluation

Boundary integral formulation; quadrature

- How to choose the quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:

1. Lay down some equally sized initial panels
2. Split corner-adjacent panels in a $1:(r-1)$ ratio ($r=2$, dyadic refinement shown)
3. Lay down Gauss-Legendre quadrature nodes on panels.

- Quadrature coordinates relative to the nearest corner to avoid catastrophic cancellation
- No special rules (yet) for close evaluation

Boundary integral formulation; quadrature

- How to choose the quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:

1. Lay down some equally sized initial panels
2. Split corner-adjacent panels in a $1:(r-1)$ ratio ($r=2$, dyadic refinement shown)
3. Lay down Gauss-Legendre quadrature nodes on panels.

- Quadrature coordinates relative to the nearest corner to avoid catastrophic cancellation
- No special rules (yet) for close evaluation

Boundary integral formulation; quadrature

- How to choose the quadrature nodes $\left\{s_{i}\right\}_{i=1}^{N}$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:

1. Lay down some equally sized initial panels
2. Split corner-adjacent panels in a $1:(r-1)$ ratio ($r=2$, dyadic refinement shown)
3. Lay down Gauss-Legendre quadrature nodes on panels.

- Quadrature coordinates relative to the nearest corner to avoid catastrophic cancellation
- No special rules (yet) for close evaluation

Reconstructing the solution

- Reconstructing u via the single-layer representation only works ~inside the unit cell, because lattice sum needed for $\Phi_{\mathrm{p}}(x, y)$ converges in a disc
- Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity:

$$
u\left(x_{1}+n d, x_{2}\right)=e^{i n \kappa} u\left(x_{1}, x_{2}\right)
$$

- Vertically outside of unit cell (above), match solution to upwards propagating radiation condition via FFT:

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)=\sum_{n \in \mathbb{Z}} c_{n} e^{i \kappa_{n} x_{1}+k_{n} x_{2}}, \quad x_{2}>x_{2}^{(0)}=\frac{d}{2} \\
u\left(x_{1}, x_{2}\right) e^{-i \kappa x_{1}}=\sum_{n \in \mathbb{Z}} c_{n} e^{2 i n \pi x_{1}} e^{i k_{n} x_{2}}=\sum_{n \in \mathbb{Z}} \tilde{c}_{n} e^{2 i n \pi x_{1}} \rightarrow \mathrm{DFT}
\end{gathered}
$$

Copies of unit cell (and its extension)

Finding trapped modes, chirp reconstruction via ray model

- Trapped modes occur when the Fredholm determinant is singular, i.e.

$$
\left(I-2 D^{\mathrm{T}}\right) \sigma=0
$$

has a nontrivial solution.

- Not a spurious resonance; this is a physical mode!
- D depends on κ, ω, so trapped modes only occur at some (κ, ω) combinations
- To find them: fix ω, sweep over all possible $\kappa, \kappa \in[-\pi, \pi]$ and do root finding (e.g. Newton's method)
- Compute:
- Dispersion relation, $\omega(\kappa)$, of trapped modes
- The group velocity of a trapped mode, $\frac{\mathrm{d} \omega}{\mathrm{d} \kappa}$, velocity at which the envelope of a wavepacket travels
- Ray model: arrival time of different frequencies at El Castillo
- Neglect: spreading along stairs in 3rd dimension; changes in amplitude; assume all trapped modes are excited

Finding trapped modes, chirp reconstruction via ray model

- Trapped modes occur when the Fredholm determinant is singular, i.e.

$$
\left(I-2 D^{\mathrm{T}}\right) \sigma=0
$$

has a nontrivial solution.

- This eigenmode then pollutes the solution of the integral equation
- D depends on κ, ω, so trapped modes only occur at some (κ, ω) combinations
- To find them: fix ω, sweep over all possible $\kappa, \kappa \in[-\pi, \pi]$ and do root finding (e.g. Newton's method)
- Compute:
- Dispersion relation, $\omega(\kappa)$, of trapped modes
- The group velocity of a trapped mode, $\frac{\mathrm{d} \omega}{\mathrm{d} \kappa}$, velocity at which the envelope of a wavepacket travels
- Ray model: arrival time of different frequencies at El Castillo
- Neglect: spreading along stairs in 3rd dimension; changes in amplitude; assume all trapped modes are excited

Finding trapped modes, chirp reconstruction via ray model

- Trapped modes occur when the Fredholm determinant is singular, i.e.

$$
\left(I-2 D^{\mathrm{T}}\right) \sigma=0
$$

has a nontrivial solution.

- This eigenmode then pollutes the solution of the integral equation
- D depends on κ, ω, so trapped modes only occur at some (κ, ω) combinations
- To find them: fix ω, sweep over all possible $\kappa, \kappa \in[-\pi, \pi]$ and do root finding (e.g. Newton's method)
- Compute:
- Dispersion relation, $\omega(\kappa)$, of trapped modes

- The group velocity of a trapped mode, $\frac{\mathrm{d} \omega}{\mathrm{d} \kappa}$, velocity at which the envelope of a wavepacket travels
- Ray model: arrival time of different frequencies at El Castillo
- Neglect: spreading along stairs in 3rd dimension; changes in amplitude; assume all trapped modes are excited

Array scanning / Floquet-Bloch transform

- A neat trick: write point source as an integral of quasiperiodic sets of point sources over the horizontal wavenumber κ

$$
\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)=\frac{d}{2 \pi} \int_{-\pi / d}^{\pi / d} \sum_{n=-\infty}^{\infty} e^{i n \kappa d} \delta\left(\mathbf{x}-\mathbf{x}_{0}-n \mathbf{d}\right) \mathrm{d} \kappa
$$

\rightarrow the scattered wave from a single point source can be obtained by integrating $u_{s}(x, \kappa)$ in the first Brillouin zone, $\kappa \in[-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But, on real axis:
- Branch cuts at Wood anomalies κ_{W}, squareroot singularity
- Poles at trapped modes $\kappa_{\text {tr }}$
- Contour deformation (example path shown), sinusoidal with amplitude A, trapezoidal rule with $P_{\text {asm }}$ nodes
- Direction of branch cuts/contour obeys the limiting absorption principle: $u(\mathbf{x}, t)=u(\mathbf{x}) e^{-i \omega t}$ correspond to outgoing waves

Array scanning / Floquet-Bloch transform

- A neat trick: write point source as an integral of quasiperiodic sets of point sources over the horizontal wavenumber κ

$$
\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)=\frac{d}{2 \pi} \int_{-\pi / d}^{\pi / d} \sum_{n=-\infty}^{\infty} e^{i n \kappa d} \delta\left(\mathbf{x}-\mathbf{x}_{0}-n \mathbf{d}\right) \mathrm{d} \kappa
$$

\rightarrow the scattered wave from a single point source can be obtained by integrating $u_{s}(x, \kappa)$ in the first Brillouin zone, $\kappa \in[-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But, on real axis:
- Branch cuts at Wood anomalies κ_{W}, squareroot singularity
- Poles at trapped modes $\kappa_{\text {tr }}$
- Contour deformation (example path shown), sinusoidal with amplitude A, trapezoidal rule with $P_{\text {asm }}$ nodes
- Direction of branch cuts/contour obeys the limiting absorption principle: $u(\mathbf{x}, t)=u(\mathbf{x}) e^{-i \omega t}$ correspond to outgoing waves

Array scanning / Floquet-Bloch transform

- A neat trick: write point source as an integral of quasiperiodic sets of point sources over the horizontal wavenumber κ

$$
\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)=\frac{d}{2 \pi} \int_{-\pi / d}^{\pi / d} \sum_{n=-\infty}^{\infty} e^{i n \kappa d} \delta\left(\mathbf{x}-\mathbf{x}_{0}-n \mathbf{d}\right) \mathrm{d} \kappa
$$

\rightarrow the scattered wave from a single point source can be obtained by integrating $u_{s}(x, \kappa)$ in the first Brillouin zone, $\kappa \in[-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But, on real axis:
- Branch cuts at Wood anomalies κ_{W}, squareroot singularity
- Poles at trapped modes $\kappa_{\text {tr }}$
- Contour deformation (example path shown), sinusoidal with amplitude A, trapezoidal rule with $P_{\text {asm }}$ nodes
- Direction of branch cuts/contour obeys the limiting absorption principle: $u(\mathbf{x}, t)=u(\mathbf{x}) e^{-i \omega t}$ correspond to outgoing waves

Array scanning / Floquet-Bloch transform

- A neat trick: write point source as an integral of quasiperiodic sets of point sources over the horizontal wavenumber κ

$$
\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)=\frac{d}{2 \pi} \int_{-\pi / d}^{\pi / d} \sum_{n=-\infty}^{\infty} e^{i n \kappa d} \delta\left(\mathbf{x}-\mathbf{x}_{0}-n \mathbf{d}\right) \mathrm{d} \kappa
$$

\rightarrow the scattered wave from a single point source can be obtained by integrating $u_{s}(x, \kappa)$ in the first Brillouin zone, $\kappa \in[-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But, on real axis:
- Branch cuts at Wood anomalies κ_{W}, squareroot singularity
- Poles at trapped modes $\kappa_{\text {tr }}$
- Contour deformation (example path shown), sinusoidal with amplitude A, trapezoidal rule with $P_{\text {asm }}$ nodes
- Direction of branch cuts/contour obeys the limiting absorption principle: $u(\mathbf{x}, t)=u(\mathbf{x}) e^{-i \omega t}$ correspond to outgoing waves

Time-propagation of the total field away from the source (for a single ω)

Convergence tests

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity
- Net flux (probability current in QM) conserved over a closed box: for an incoming plane wave, $\mathfrak{J} \int_{\Gamma} \bar{u} u_{n} \mathrm{~d} s=0$ (no source inside)
- How close is it to 0 numerically?
- Test convergence in the number of quadrature nodes along array scanning contour: how well can we reconstruct a single point source from a periodic array of point sources (i.e. $\Phi(\mathbf{x})$ from $\left.\Phi_{\mathrm{p}, \kappa}(\mathbf{x})\right) ?$

Convergence tests

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity
- Net flux (probability current in QM) conserved over a closed box: for an incoming plane wave, $\mathfrak{J} \int_{\Gamma} \bar{u} u_{n} \mathrm{~d} s=0$ (no source inside)
- How close is it to 0 numerically?
- Test convergence in the number of quadrature nodes along array scanning contour: how well can we reconstruct a single point source from a periodic array of point sources (i.e. $\Phi(\mathbf{x})$ from $\left.\Phi_{\mathrm{p}, \mathrm{K}}(\mathbf{x})\right) ?$

Power distribution in trapped modes

- What fraction of the total flux is transported in trapped modes?
- Claim: in the far-away limit near the surface, only trapped mode remains, i.e. only contribution to κ-integral will be from $\kappa=\kappa_{\text {tr }}$
- Why? Take solution in the limit of n (cell index) $\rightarrow \infty$,

$$
\lim _{n \rightarrow+\infty} u\left(x_{1}+n d, x_{2}\right)=\frac{1}{2 \pi} \lim _{n \rightarrow+\infty} \int_{-\pi}^{\pi} u_{\kappa}\left(x_{1}, x_{2}\right) e^{i n \kappa} \mathrm{~d} \kappa .
$$

Close deformed contour in upper half plane \rightarrow only residual of righthand pole remains. Therefore,

$$
\lim _{n \rightarrow+\infty} u\left(x_{1}+n d, x_{2}\right)=i \operatorname{Res}_{\kappa=\kappa_{\mathrm{tr}}} u\left(x_{1}, x_{2}\right) \quad \text { up to a complex phase. }
$$

For $n \rightarrow-\infty$, residue of left-hand pole dictates.

- Compute residues numerically, on a small circle around $\kappa_{\text {tr }}$ with

 trapezoidal rule.

Power distribution in trapped modes

- What fraction of the total flux is transported in trapped modes?
- Claim: in the far-away limit near the surface, only trapped mode remains, i.e. only contribution to κ-integral will be from $\kappa=\kappa_{\text {tr }}$
- Why? Take solution in the limit of n (cell index) $\rightarrow \infty$,

$$
\lim _{n \rightarrow+\infty} u\left(x_{1}+n d, x_{2}\right)=\frac{1}{2 \pi} \lim _{n \rightarrow+\infty} \int_{-\pi}^{\pi} u_{\kappa}\left(x_{1}, x_{2}\right) e^{i n \kappa} \mathrm{~d} \kappa .
$$

Close deformed contour in upper half plane \rightarrow only residual of righthand pole remains. Therefore,

$$
\lim _{n \rightarrow+\infty} u\left(x_{1}+n d, x_{2}\right)=i \operatorname{Res}_{\kappa=\kappa_{\mathrm{tr}}} u\left(x_{1}, x_{2}\right) \quad \text { up to a complex phase. }
$$

For $n \rightarrow-\infty$, residue of left-hand pole dictates.

- Compute residues numerically, on a small circle around $\kappa_{\text {tr }}$ with trapezoidal rule.

Power distribution in trapped modes

- We reconstruct the field $u(x)$ at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{\text {tr }}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$
F_{\text {trapped }, \rightarrow}=\mathfrak{J}\left(\int_{x_{2,0}}^{a} \bar{u} \partial_{x_{1}} u \mathrm{~d} x_{2}\right)
$$

where integral extends from boundary to where the mode has sufficiently decayed, but at what x_{1} ?

but regular around here, so Gauss-Legendre rule works well

- Simple Gauss-Legendre, closest node no closer than width of smallest panel on boundary.
- Total power injected into the system is $F_{\text {tot }}=\frac{1}{4}+\mathfrak{F}\left(u\left(\mathbf{x}_{0}\right)\right)$, with \mathbf{x}_{0} the source location.

Future work

- How does the position of the source affect the power distribution in trapped modes?
- Can a left/right asymmetry be induced?
- What happens in asymmetric geometries?
- Can we derive an fast, approximate model for the power distribution for applications such as nondestructive sensing?
- Poles coalesce as $\kappa \rightarrow 0, \pm \pi$, more quadrature nodes and differently shaped path needed in array scanning integral to preserve accuracy
- 3D periodic surfaces: band structure complex, poles are lines
- Inverse problem for fault detection in periodic structures (e.g. photonic crystals)

Periodization II - Wood anomalies

- At κ-values where k_{n}^{2} changes sign, i.e. $\kappa+2 n \pi / d= \pm \omega$
- Behavior of periodic Green's function in the x_{2} direction changes: oscillatory \rightarrow evanescent
- Quasiperiodic Green’s function does not exist (!)
- Criss-cross lines in $\omega-\kappa$ plane
- Due to symmetry, we can restrict ourselves to the first Brillouin zone (shown in red)

