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• Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:


• Sound travels “down” along stairs  trapped modes, propagating 

horizontally, evanescent perpendicular to stairs


• Echo from footsteps sound like raindrops (Cruz et al, Acta Acustica, 2009)


• When do trapped modes exist? What is their dispersion relation?


• Compute single-frequency solution from single point excitation


• How does power in the system get distributed between trapped modes and 

outgoing radiation?


• Periodic surfaces have been exploited for their waveguiding properties:


• Photonic crystals, acoustic metamaterials, diffraction gratings, antennae, 

anechoic chambers, amphitheaters, …


• Fast, robust methods needed in optimization loops


• Our method can have impact in the above applications


→

→

Scattering of a nonperiodic source from a 
periodic, corrugated surface

El Castillo (“The Castle”), 

a Mesoamerican step-pyramid in Chichen Itza, Mexico. 

Questions, goals, and applications



Why is this problem hard? Previous and new work
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• Finite differencing or finite elements methods


• Mesh-free methods: method of fundamental solutions, plane waves method


• Rayleigh methods based on the Rayleigh hypothesis


• Approximations, e.g. Helmholtz—Kirchhoff


• First high-order accurate scattering of a nonperiodic source from a 

periodic surface with corners: arXiv:2310.12486  (with Alex Barnett)


- Boundary integral equation & method:  instead of , can deal 

with singularities and be accurate via high-order quadrature


𝒪(N) 𝒪(N2)

Previous work and what we are doing

What’s hard about this problem?

• Domain is infinite


• Periodic boundary  cannot truncate due to artificial reflections


• Nonperiodic source breaks periodicity  cannot reduce to single unit cell* 
(periodization)


• Corners introduce singularities


→

→

https://arxiv.org/abs/2310.12486


•  position vector,  lattice vector.


•  is the incident,  is the scattered wave


•  is the total solution


•  is the horizontal (on-surface) wavenumber 

•  normal derivative in the outward sense 

• If there are multiple sources, quasiperiodicity condition ensures 

the solution obeys the symmetry of the boundary 


• The solution accrues an overall (Bloch) phase  over one 

period .


• Set of possible horizontal wavevectors ,   

, all lead to the same quasiperiodicity


• If the total wavevector is , then  is 

the vertical wavevector (imaginary part always +ve)


- Vertically propagating or evanescent 


-  are Wood anomalies (abrupt change in behavior)

x = (x1, x2) d = (d,0)

ui us

u = ui + us

κ

un := n ⋅ ∇u

α = eiκ

d

κn = κ + 2πn/d

n ∈ ℤ

k = (κn, kn) kn = ω2 − κ2
n

kn = 0

Problem setup - quasiperiodic set of  sources

−(Δ + ω2)u =
∞

∑
n=−∞

einκdδ(x − x0 − nd) in Ω, PDE (Helmholtz) 

un = 0 on ∂Ω, boundary condition (Neu)
u(x1 + nd, x2) = αnu(x1, x2) (x1, x2) ∈ Ω, quasiperiodicity

u(x1, x2) = ∑
n∈ℤ

cnei(κnx1+knx2), x2 > x0
2 radiation condition
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Boundary integral formulation

• Use a single-layer potential (SLP) representation for the scattered wave:





    ensures  will satisfy the PDE.


• Using the appropriate jump relations, this gives the Fredholm integral equation





where  is the boundary data, and  is the unknown density, and 





• Solve by discretizing the integral eq with Nystrom’s method: 


if  are the values of  at a set of quadrature nodes  on 

the boundary with weights , then


 ,


 is the density  evaluated on the boundary nodes.


•  can then be reconstructed anywhere using the SLP.


us(x) = 𝒮σ = ∫Γ
Φp(x, y)σ(y)dsy, x ∈ ℝ2,

u

(I − 2DT)σ = − 2f on Γ,

f = − (ui)n |Γ σ

DT = ∫Γ
nx ⋅ ∇Φp(x, y)σ(y)dsy on Γ .

v(N)
i = {(un)i}N

i=1 un {si}N
i=1

{wi}N
i=1

v(N)
i −

N

∑
j=1

wjΦp(si, sj)v(N)
j = f(si), ∀i = 1,2,…, N

v σ

u

us(t) =
N

∑
j=1

wjΦp(t, sj)v(N)
j

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory
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• Reduce computation to the unit cell by using 

the quasiperiodic Green’s function, 

, where  is the target’s,  is the 

source’s position vector: 


Φp(x, y) x y

−(Δ + ω2)Φp(x, 0) =
∞

∑
n=−∞

αnδ(x1 − nd)δ(x2)

Periodization

n = 0 n = 1 n = 2 n = 3n = �1n = �2n = �3

x1

x2

 near field, 

direct summation

|n | ≤ 1 :

 far field, 

Neumann series:


|n | > 1 :

Φp,far(x,0) =
i
4 [S0(ω, κ)J0(ω, x) + 2

∞

∑
n=1

Sn(ω, κ)Jn(ω, x)a(x)]
• The  are lattice sums involving sums over -th order Hankel 

functions


• Computed once per 


• Slowly convergent  use integral representation (Yasumoto and 

Yoshitomi, IEEETAP, 1999)


• Only convergent in a disc  only use it inside unit cell

Sn(ω, κ) n

ω, κ

→

→

Φp(x, 0) =
i
4

∞

∑
n=−∞

αnH(1)
0 (ω (x1 − nd)2 + x2

2 )



Boundary integral formulation; quadrature

• How to choose the quadrature nodes ?


• Integrand is singular at corners! 


•  use panel quadrature with adaptive corner refinement:


1. Lay down some equally sized initial panels


2. Split corner-adjacent panels in a  ratio ( , dyadic 

refinement shown)


3. Lay down Gauss—Legendre quadrature nodes on panels.


• Quadrature coordinates relative to the nearest corner to avoid catastrophic 

cancellation


• No special rules (yet) for close evaluation

{si}N
i=1

→

1 : (r − 1) r = 2

d
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Reconstructing the solution

• Reconstructing  via the single-layer representation only works ~inside the 

unit cell, because lattice sum needed for  converges in a disc


• Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity: 





• Vertically outside of unit cell (above), match solution to upwards 

propagating radiation condition via FFT:


 


u

Φp(x, y)

u(x1 + nd, x2) = einκu(x1, x2)

u(x1, x2) = ∑
n∈ℤ

cneiκnx1+knx2, x2 > x(0)
2 = d

2

u(x1, x2)e−iκx1 = ∑
n∈ℤ

cne2inπx1eiknx2 = ∑
n∈ℤ

c̃ne2inπx1  DFT→

Reconstruct via 
single-layer 
representation

Reconstruct via Fouier 
transform (upwards 
propagating radiation 
condition)

Copies of unit 
cell (and its 
extension)



Finding trapped modes, chirp reconstruction via ray model

• Trapped modes occur when the Fredholm determinant is singular, i.e.





has a nontrivial solution. 


• Not a spurious resonance; this is a physical mode!


•  depends on , so trapped modes only occur at some  

combinations


• To find them: fix , sweep over all possible ,  and do 

root finding (e.g. Newton’s method) 


• Compute:


• Dispersion relation, , of trapped modes


• The group velocity of a trapped mode, , velocity at which the 

envelope of a wavepacket travels


• Ray model: arrival time of different frequencies at El Castillo


• Neglect: spreading along stairs in 3rd dimension; changes in 

amplitude; assume all trapped modes are excited

(I − 2DT)σ = 0

D κ, ω (κ, ω)

ω κ κ ∈ [−π, π]

ω(κ)
dω
dκ
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Array scanning / Floquet—Bloch transform

(for a given )ω• A neat trick: write point source as an integral of quasiperiodic 

sets of point sources over the horizontal wavenumber 


,


 the scattered wave from a single point source can be 

obtained by integrating  in the first Brillouin zone, 

. (Munk and Burrell, IEEETAP, 1979)


• But, on real axis:


• Branch cuts at Wood anomalies , squareroot singularity


• Poles at trapped modes 


• Contour deformation (example path shown), sinusoidal with 

amplitude , trapezoidal rule with  nodes


• Direction of branch cuts/contour obeys the limiting absorption 

principle:  correspond to outgoing waves

κ

δ(x − x0) =
d

2π ∫
π/d

−π/d

∞

∑
n=−∞

einκdδ(x − x0 − nd)dκ

→

us(x, κ)

κ ∈ [−π, π]

κW

κtr

A Pasm

u(x, t) = u(x)e−iωt
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Time-propagation of the total field away from the source (for a single )ω



Convergence tests

• Analytic solution unknown and self-convergence can mislead  

devise convergence test via conserved quantity


• Net flux (probability current in QM) conserved over a closed box: 

for an incoming plane wave,  (no source inside)


• How close is it to 0 numerically?


• Test convergence in the number of quadrature nodes along array 

scanning contour: how well can we reconstruct a single point 

source from a periodic array of point sources (i.e.  from 

)?
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Power distribution in trapped modes
• What fraction of the total flux is transported in trapped modes? 

• Claim: in the far-away limit near the surface, only trapped mode 

remains, i.e. only contribution to -integral will be from 


• Why? Take solution in the limit of  (cell index) 


.


Close deformed contour in upper half plane  only residual of right-

hand pole remains. Therefore,





For residue of left-hand pole dictates. 

• Compute residues numerically, on a small circle around  with 

trapezoidal rule. 

κ κ = κtr

n → ∞,

lim
n→+∞

u(x1 + nd, x2) =
1

2π
lim

n→+∞ ∫
π

−π
uκ(x1, x2)einκdκ

→

lim
n→+∞

u(x1 + nd, x2) = iResκ=κtr
u(x1, x2) up to a complex phase.

n → − ∞,

κtr

−κW

κW−κtr

κtr
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• We reconstruct the field  at an infinitely far unit cell on the right/left (up to a phase) by 

taking its residue around the trapping wavenumber  

• Then all flux moving to right/left is in a trapped mode; compute numerically:


,


where integral extends from boundary to where the mode has sufficiently decayed, but at 

what ?


• Simple Gauss—Legendre, closest node no closer than width of smallest panel on boundary.


• Total power injected into the system is , with  the source location.

u(x)
±κtr

Ftrapped,→ = ℑ (∫
a

x2,0

ū∂x1
udx2)

x1

Ftot = 1
4 +ℑ(u(x0)) x0

Power distribution in trapped modes
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• How does the position of the source affect the power distribution in trapped modes?


- Can a left/right asymmetry be induced?


- What happens in asymmetric geometries?


- Can we derive an fast, approximate model for the power distribution for applications 

such as nondestructive sensing?


• Poles coalesce as , more quadrature nodes and differently shaped path needed 

in array scanning integral to preserve accuracy


• 3D periodic surfaces: band structure complex, poles are lines


• Inverse problem for fault detection in periodic structures (e.g. photonic crystals)

κ → 0, ± π

Future work



Thank you



• At -values where  changes sign, i.e. 


• Behavior of periodic Green’s function in the  direction changes: 

oscillatory  evanescent


• Quasiperiodic Green’s function does not exist (!)


• Criss-cross lines in  plane


• Due to symmetry, we can restrict ourselves to the first Brillouin zone 

(shown in red)

κ k2
n κ + 2nπ/d = ± ω

x2

→

ω − κ

Periodization II — Wood anomalies

!
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