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Scattering of a nonperiodic source from a
periodic, corrugated surface

Questions, goals, and applications

* Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
e Sound travels “down” along stairs — trapped modes, propagating
horizontally, evanescent perpendicular to stairs
* Echo from footsteps sound like raindrops (Cruz et al, Acta Acustica, 2009)
 When do trapped modes exist? What is their dispersion relation?
* Compute single-frequency solution from single point excitation
* How does power in the system get distributed between trapped modes and
outgoing radiation?
* Periodic surfaces have been exploited for their waveguiding properties:
* Photonic crystals, acoustic metamaterials, diffraction gratings, antennae,
anechoic chambers, amphitheaters, ...
* Fast, robust methods needed in optimization loops

« —Our method can have impact in the above applications

El Castillo (“The Castle”),
a Mesoamerican step-pyramid in Chichen Itza, Mexico.



Why is this problem hard? Previous and new work

* Domain is infinite

e Periodic boundary — cannot truncate due to artificial reflections
Nonperiodic source breaks periodicity — cannot reduce to single unit cell™
(periodization)

* Corners introduce singularities

* Finite differencing or finite elements methods
* Mesh-free methods: method of fundamental solutions, plane waves method
* Rayleigh methods based on the Rayleigh hypothesis
* Approximations, e.g. Helmholtz—Kirchhoff
* First high-order accurate scattering of a nonperiodic source from a
periodic surface with corners: arXiv:2310.12486 (with Alex Barnett)
- Boundary integral equation & method: O(N) instead of O(N?), can deal

with singularities and be accurate via high-order quadrature
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https://arxiv.org/abs/2310.12486

Problem setup - quasiperiodic set of sources
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PDE (Helmholtz)

boundary condition (Neu)
quasiperiodicity

radiation condition

X = (x, X,) position vector, d = (d,0) lattice vector.

u; is the incident, u, is the scattered wave

u = u; + ugis the total solution

K is the horizontal (on-surface) wavenumber

u, =N - Vu normal derivative in the outward sense

If there are multiple sources, quasiperiodicity condition ensures
the solution obeys the symmetry of the boundary

The solution accrues an overall (Bloch) phase o = e’ over one
period d.

Set of possible horizontal wavevectors k, = k + 2zn/d,

n € Z, all lead to the same quasiperiodicity

- _ _ 2 2 .
If the total wavevector is kK = (k,, k), then k, = \/ ®w- — K, is
the vertical wavevector (imaginary part always +ve)
= Vertically propagating or evanescent

- k, = 0 are Wood anomalies (abrupt change in behavior)



Boundary integral formulation

* Use a single-layer potential (SLP) representation for the scattered wave:

e

U(X) = o = (I)p(X, y)o(y)ds,, x € R?
JT

ensures u will satisfy the PDE.

* Using the appropriate jump relations, this gives the Fredholm integral equation
(I-2DY%o =—-2f onT,
where f = — (), | - is the boundary data, and ¢ is the unknown density, and

D'=| n,V®(x,y)o(y)ds, onl.
JT
* Solve by discretizing the integral eq with Nystrom’s method:

ifv(N) =

l

{(u,);}, are the values of u,, at a set of quadrature nodes {s;}*_, on

the boundary with weights {wi}f.\; ;» then
N
vl.(N) — Z qu)p(Si, Sj)vj(N) =f(s), Vi=12,...,N,
j=1
v is the density o evaluated on the boundary nodes.

e 1 can then be reconstructed anywhere using the SLP. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

N
u(t) = Z ijDp(t, sj)vj(N )
j=1



Boundary integral formulation

D, (x,y)

* Use a single-layer potential (SLP) representation for the scattered wave:

e

U(X) = o = (I)p(X, y)o(y)ds,, x € R?
JT

ensures u will satisfy the PDE.

* Using the appropriate jump relations, this gives the Fredholm integral equation
(I-2DYe = -2f onT,

where f = — (), | - is the boundary data, and ¢ is the unknown density, and

D' = n, V(Dp(x, y)a(y)dsy onl. ’,
JT
* Solve by discretizing the integral eq with Nystrom’s method: / % F

if vl.(N) = {(un)i}ﬁ.il are the values of u, at a set of quadrature nodes {Si}fil on

the boundary with weights {wi}f.\; ;» then ¢
N

vi(N) _ 2 ijI)p(sl-, Sj)vj(N) =f(s,), Vi=12,...,N, SLP /‘
j=1

v is the density o evaluated on the boundary nodes.

e 1 can then be reconstructed anywhere using the SLP. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

N
u(r) = Z ijDp(t, s-)vj(N )
j=1



Periodization

* Reduce computation to the unit cell by using
the quasiperiodic Green’s function,
(I)p(X, y), where X is the target’s, y is the

source’s position vector:

—(A + 0D (x,0) = i a""5(x; — nd)S(x,)

n=—a~oo

|n| <1 :near field,
direct summation

« The § (w, k) are lattice sums involving sums over n-th order Hankel

functions

 Computed once per w, K

e Slowly convergent — use integral representation (Yasumoto and
Yoshitomi, IEEETAP, 1999)

* Only convergent in a disc — only use it inside unit cell

l
(I)p,far(X,O) — Z

|n| > 1 : farfield,
Neumann series:

So(@, )o@, %) +2 ) S, (@, K], (@, X)a(x)

n=1




Boundary integral formulation; quadrature

« How to choose the quadrature nodes {Si}iil?
* Integrand is singular at corners!
* — use panel quadrature with adaptive corner refinement:
1. Lay down some equally sized initial panels
2. Split corner-adjacent panelsina l : (r — 1) ratio (r = 2, dyadic
refinement shown)
3. Lay down Gauss—Legendre quadrature nodes on panels.
* Quadrature coordinates relative to the nearest corner to avoid catastrophic

cancellation

* No special rules (yet) for close evaluation
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Reconstructing the solution

 Reconstructing u via the single-layer representation only works ~inside the
unit cell, because lattice sum needed for CI)p(x, y) converges in a disc

* Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity:

u(x; + nd, x,) = e™u(x, x,)

* Vertically outside of unit cell (above), match solution to upwards — - 0.369
propagating radiation condition via FFT: Copies of MAQEB\ - 0.041

_ i x;+k x 0) _ d cell (and its
u(xy, x,) = 2 Cpe" T, Xy > XY = 2 extension)
nez
u(x ) —IKX] — 2inmxy ik, x, ~ ,2innx,
15 X2)€ = C,€ € = C,€ — DFT
nes/ nes/

Reconstruct via Fouier
transform (upwards
propagating radiation

condition)
2
1.354
5 - 1.026
- 0.697

- —0.287

2_

—0.615

—0.944

—1.272
—1.600

Reconstruct via
single-layer
representation



Finding trapped modes, chirp reconstruction via ray model

* Trapped modes occur when the Fredholm determinant is singular, i.e.

(I-2DY =0
has a nontrivial solution.
* Not a spurious resonance; this is a physical mode! 4
« D depends on k, w, so trapped modes only occur at some (k, @) 3
combinations N
 To find them: fix @, sweep over all possible x, k € [—x, 7] and do ?

root finding (e.g. Newton’s method)

 Compute:
 Dispersion relation, w(k), of trapped modes —2 0 2
dw
. The group velocity of a trapped mode, d_ velocity at which the 1 i
K

envelope of a wavepacket travels
 Ray model: arrival time of different frequencies at El Castillo
* Neglect: spreading along stairs in 3rd dimension; changes in

amplitude; assume all trapped modes are excited



Finding trapped modes, chirp reconstruction via ray model

* Trapped modes occur when the Fredholm determinant is singular, i.e.

(I —2DNHe =0
has a nontrivial solution. _ i
3.0 L light line 1.0 ]
* This eigenmode then pollutes the solution of the integral equation : " > |
2.5 | '
- -~ 0.8}
« D depends on k, @, so trapped modes only occur at some (x, @) : %“ -
3 20t < j
combinations I > 06
| | . £ 15} = |
» To find them: fix w, sweep over all possible k, k € [—, 7] and do SO S|
— | . 04 B
root finding (e.g. Newton’s method) L0 <
. = 0.2
 Compute: -
 Dispersion relation, w(k), of trapped modes 0.0, : : : 0.0, . ;
dw . .
. The group velocity of a trapped mode, - velocity at which the horizontal wavenumber, & horizontal wavenumber, &
K

envelope of a wavepacket travels
 Ray model: arrival time of different frequencies at El Castillo
* Neglect: spreading along stairs in 3rd dimension; changes in

amplitude; assume all trapped modes are excited



Finding trapped modes, chirp reconstruction via ray model

* Trapped modes occur when the Fredholm determinant is singular, i.e.

(I —2DNHe =0

has a nontrivial solution.

350
* This eigenmode then pollutes the solution of the integral equation

w
-
-

DO
ot
-]

« D depends on k, @, so trapped modes only occur at some (x, @)

combinations

—_
Ot
-

To find them: fix w, sweep over all possible x, kK € [—x, 7] and do

frequency, f/Hz
DO
S
S

[
-
-

root finding (e.g. Newton’s method)

QO
O|||||||||||||||||||||||||||||||||||||

50
 Compute:
« Dispersion relation, w(x), of trapped modes 0.2 0.4 0.6 0.8
do arrival time, t/s
. The group velocity of a trapped mode, d_ velocity at which the
K

envelope of a wavepacket travels
 Ray model: arrival time of different frequencies at El Castillo
* Neglect: spreading along stairs in 3rd dimension; changes in

amplitude; assume all trapped modes are excited

1.0



Array scanning / Floquet—Bloch transform

* A neat trick: write point source as an integral of quasiperiodic R(u(0.22, — 0.16)) in the complex k-plane (for a given )

sets of point sources over the horizontal wavenumber k 20- 0421
d ~7t/d oo 1.5 -
(X — X)) = > Z e 5(x — x, — nd)dx, 0.210
T _ma, 1.0 - - —0.002
— the scattered wave from a single point source can be 0913
obtained by integrating u(x, k) in the first Brillouin zone, -  0u0a
S .
K € |—r, ]. (Munk and Burrell, IEEETAP, 1979) o635
 But, on real axis: ~0.846
» Branch cuts at Wood anomalies kv, squareroot singularity ~1.057
« Poles at trapped modes k;, 208
. . —-1.479
e Contour deformation (example path shown), sinusoidal with -1 0
R(k)

amplitude A, trapezoidal rule with P, . nodes

 Direction of branch cuts/contour obeys the limiting absorption

principle: u(x, 1) = u(x)e "' correspond to outgoing waves



Array scanning / Floquet—Bloch transform

* A neat trick: write point source as an integral of quasiperiodic

sets of point sources over the horizontal wavenumber k

P]T/d 0 9) .
2 e"FdS(x — X, — nd)dk,

J—nld ;— _ o

o(X — X)) = —
( 0) 27

— the scattered wave from a single point source can be
obtained by integrating u(x, k) in the first Brillouin zone,

K € |—x, r]. (Munk and Burrell, IEEETAP, 1979)

But, on real axis:
« Branch cuts at Wood anomalies kyy,, squareroot singularity
» Poles at trapped modes «,

Contour deformation (example path shown), sinusoidal with

amplitude A, trapezoidal rule with P, . nodes

Direction of branch cuts/contour obeys the limiting absorption

principle: u(x, 1) = u(x)e "' correspond to outgoing waves

(g

R(u(0.22, —0.16)) in the complex k-plane (for a given w)

2.0 -

1.5 A

1.0 A

0.5 -

0.0

_05 -

—1.0 ~

—1.5 A

_20 -

0.421

0.210

- —0.002

- —0.213

- —0.424

- —0.635

- —0.846

—1.057

—1.268

—-1.479



Array scanning / Floquet—Bloch transform

* A neat trick: write point source as an integral of quasiperiodic R(u(0.22, — 0.16)) in the complex k-plane (for a given )

2.0 -

sets of point sources over the horizontal wavenumber k 7/ 0 4o
d ~7tld 0 1.5 - ///
o(X —Xy) = > 2 e"FdS(x — X, — nd)dk, 4 0.210
T /
J_glg . — 1.0 |
e n=—co 4 - —0.002
— the scattered wave from a single point source can be 0 - N 0214
. I - = .
obtained by integrating u(x, k) in the first Brillouin zone, _ /cw K
= 0.0 — 9 4\;4/ - —0.424
K € |—x, r]. (Munk and Burrell, IEEETAP, 1979) Ky K oean
—0.5 - , |
* But, on real axis: ( | _0.846
—1.0 ~ /I
« Branch cuts at Wood anomalies kyy, squareroot singularity )/ —1.057
B ~1.268
 Poles at trapped modes «, b/ |
. . . . ~2.017 . . . . . . ~1.479
e Contour deformation (example path shown), sinusoidal with -3 —2 -1 0 1 2 3

amplitude A, trapezoidal rule with P, . nodes

 Direction of branch cuts/contour obeys the limiting absorption

principle: u(x, 1) = u(x)e "' correspond to outgoing waves



Array scanning / Floquet—Bloch transform

* Aneat trick: write point source as an integral ot quasiperiodic Time-propagation of the total field away from the source (for a single )
sets of point sources over the horizontal wavenumber 4 -
. d 3 _ :
0(X —Xy) = — 2 e “6(x — x5 — nd)dx, - 0.24
27 | _1ld - 0.12
n=—oo >(<\' 2 - B OOO
— the scattered wave from a single point source can be i :8%%
obtained by integrating u(x, k) in the first Brillouin zone, t :823
K € |—x, ]. (Munk and Burrell, IEEETAR, 1979)
e But, on real axis: 4 - 0.80
0.64
« Branch cuts at Wood anomalies kyy,, squareroot singularity S8 i 8‘3‘3
» Poles at trapped modes «, 8(1)6
e Contour deformation (example path shown), sinusoidal with 0

amplitude A, trapezoidal rule with P, . nodes

 Direction of branch cuts/contour obeys the limiting absorption X1

principle: u(x, 1) = u(x)e "' correspond to outgoing waves



Convergence tests

* Analytic solution unknown and self-convergence can mislead —

devise convergence test via conserved quantity

* Net flux (probability current in QM) conserved over a closed box:

for an incoming plane wave, <8 | #u, ds = 0 (no source inside)
IT
* How close is it to O numerically?

* Test convergence in the number of quadrature nodes along array
scanning contour: how well can we reconstruct a single point

source from a periodic array of point sources (i.e. ®(X) from

®, (X))?

Net flux
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Convergence tests

* Analytic solution unknown and self-convergence can mislead —

devise convergence test via conserved quantity

* Net flux (probability current in QM) conserved over a closed box:

for an incoming plane wave, <8 | #u, ds = 0 (no source inside)
IT
* How close is it to O numerically?

* Test convergence in the number of quadrature nodes along array
scanning contour: how well can we reconstruct a single point

source from a periodic array of point sources (i.e. ®(X) from

®, (X))?

Absolute error in ®(xtarget ),

(0.13,0.03)
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fCtarget

10—14

0

100 200 300 400
Quadrature nodes in array scanning, Pasm
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Power distribution in trapped modes

 What fraction of the total flux is transported in trapped modes?

 Claim: in the far-away limit near the surface, only trapped mode

remains, i.e. only contribution to x-integral will be from k = k;, 2.0 - 4
4 4.85
/
: : . 1.5 ~
« Why? Take solution in the limit of ' 365
i .
N - O ] 2.44
. _ . INK ! [ <
lim u(x; + nd, x,) = > lim u(x, x,)e""dk. )
n—>4+o0o T n—>+00 J_g 7 - 1.24
Close deformed contour in — only residual of right- = - 0.03
hand pole remains. Therefore, - —1.18
- —2.38
lim u(x, + nd, x,) = iRes,_, u(x;,x,) up toacomplex phase. 359
n——+00
—-4.79
Forn — — o0, residue of left-hand pole dictates.
—6.00

« Compute residues numerically, on a small circle around k. with

trapezoidal rule.



Power distribution in trapped modes

 What fraction of the total flux is transported in trapped modes?

 Claim: in the far-away limit near the surface, only trapped mode

remains, i.e. only contribution to x-integral will be from k = k;,

« Why? Take solution in the limit of

. | -
lim u(x; +nd,x,) = — lim u(x, x,)e"" dk. 4k 0.5
n——+oo 27 n—+oo J_ - |
Close deformed contour in — only residual of right- S o ‘ 0
Q9 .
hand pole remains. Therefore, '

m u(x + nd, xp) = RS U(x1, ;) - up toa complex phase 75 50 -25 0.0 2.5 5.0

Forn — — o0, residue of left-hand pole dictates.

Compute residues numerically, on a small circle around k. with

trapezoidal rule.



Power distribution in trapped modes

We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by

taking its residue around the trapping wavenumber Xk,

* Then all flux moving to right/left is in a trapped mode; compute numerically:
~d

=3 uo, udx, |,
“ X0
where integral extends from boundary to where the mode has sufficiently decayed, but at

r trapped,—

what x,? :
< >

Expansion of field
IS singular arou
this point.

... but regular
around here, so
Gauss-Legendre

rule works well

e Simple Gauss—Legendre, closest node no closer than width of smallest panel on boundary.

. Total power injected into the system is Fi , = %+ 3 (u(Xp)), with X, the source location.

1.5 F = total power ’:'
[ trapped power ’;'
- —— trapped fraction H
]

]

]

horizontal wavenumber,

--------- total power

----- trapped power
— trapped fraction

1.5+

frequency, w



Future work

 How does the position of the source affect the power distribution in trapped modes?
- Can a left/right asymmetry be induced?
- What happens in asymmetric geometries?

- Can we derive an fast, approximate model for the power distribution for applications

such as nondestructive sensing?

» Poles coalesce as k — 0, = &, more quadrature nodes and differently shaped path needed

INn array scanning integral to preserve accuracy
* 3D periodic surfaces: band structure complex, poles are lines

* Inverse problem for fault detection in periodic structures (e.g. photonic crystals)
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Periodization Il — Wood anomalies

At x-values where k,f changes sign, i.e. Kk + 2nn/d = * w
 Behavior of periodic Green’s function in the x, direction changes: A
oscillatory — evanescent
* Quasiperiodic Green’s function does not exist (!)
e Criss-cross lines in w — Kk plane
* Due to symmetry, we can restrict ourselves to the first Brillouin zone

(shown in red)
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