Reproducing the unique acoustics of periodic staircases using boundary integral equations

Fruzsina J Agocs^{1,*}, Alex H Barnett¹, and Eric J Heller²

¹ Center for Computational Mathematics, Flatiron Institute, 2 Department of Chemistry, Harvard University, * fagocs@flatironinstitute.org

COSAHOM, Seoul, 2023

Motivation and goals

• Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs → trapped modes, propagating horizontally, evanescent perpendicular to stairs

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs → trapped modes, propagating horizontally, evanescent perpendicular to stairs
 - Echo from claps sound like raindrops, bird chirps, ... (Cruz et al, Acta Acustica, 2009)

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs \rightarrow trapped modes, propagating horizontally, evanescent perpendicular to stairs
 - Echo from claps sound like raindrops, bird chirps, ... (Cruz et al, Acta Acustica, 2009)
- When do trapped modes exist? Solve full PDE (Helmholtz) to high order, efficiently
- Compute single-frequency solution from single point source

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs \rightarrow trapped modes, propagating horizontally, evanescent perpendicular to stairs
 - Echo from claps sound like raindrops, bird chirps, ... (Cruz et al, Acta Acustica, 2009)
- When do trapped modes exist? Solve full PDE (Helmholtz) to high order, efficiently
- Compute single-frequency solution from single point source

Computational strategy

• Domain is infinite, boundary is simple \rightarrow good candidate for using a boundary element method

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs → trapped modes, propagating horizontally, evanescent perpendicular to stairs
 - Echo from claps sound like raindrops, bird chirps, ... (Cruz et al, Acta Acustica, 2009)
- When do trapped modes exist? Solve full PDE (Helmholtz) to high order, efficiently
- Compute single-frequency solution from single point source

Computational strategy

- Domain is infinite, boundary is simple \rightarrow good candidate for using a boundary element method
- Assume boundary is infinite, two-dimensional, periodic staircase, sound-hard
- First consider (quasi-)periodic problem, reduce computation to unit cell

I, *Acta Acustica*, 2009) order, efficiently

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

Motivation and goals

- Interesting acoustic phenomena near corrugated surfaces, e.g. step-temples:
 - Sound travels "down" along stairs \rightarrow trapped modes, propagating horizontally, evanescent perpendicular to stairs
 - Echo from claps sound like raindrops, bird chirps, ... (Cruz et al, Acta Acustica, 2009)
- When do trapped modes exist? Solve full PDE (Helmholtz) to high order, efficiently
- Compute single-frequency solution from single point source \bullet

Computational strategy

- Domain is infinite, boundary is simple \rightarrow good candidate for using a boundary element method
- Assume boundary is infinite, two-dimensional, **periodic** staircase, sound-hard
- First consider (quasi-)periodic problem, reduce computation to unit cell
- Use the array scanning method to arrive at the solution from a single point source, from periodic array of point sources
 - This will involve integrating over the quasiperiodicity parameter, κ

El Castillo ("The Castle"), a Mesoamerican step-pyramid in Chichen Itza, Mexico.

$$(\Delta + \omega^2)u = 0 \qquad \text{in } \Omega$$
$$u_n = 0 \qquad \text{on } \delta$$
$$u(x_1 + nd, x_2) = \alpha^n u(x_1, x_2) \qquad (x_1, x_2)$$
$$u(x_1, x_2) = \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, \quad x_2 > \delta$$

n Ω,	PDE
on $\partial \Omega$,	boundary condition (I
$(x_1, x_2) \in \Omega,$	quasiperiodicity
$x_2 > x_2^{(0)}$	radiation condition

 $\partial \Omega$ (Neumann) Ω u_i u_{s} scattered x_2 trapped x_1

$$\begin{aligned} (\Delta + \omega^2)u &= 0 & \text{in } \Omega, & \mathsf{F} \\ u_n &= 0 & \text{on } \partial\Omega, & \mathsf{b} \\ u(x_1 + nd, x_2) &= \alpha^n u(x_1, x_2) & (x_1, x_2) \in \Omega, & \mathsf{c} \\ u(x_1, x_2) &= \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, & x_2 > x_2^{(0)} & \mathsf{r} \end{aligned}$$

PDE coundary condition (Neumann) quasiperiodicity

radiation condition

- u_i is the incident, u_s is the scattered wave
- $u = u_i + u_s$ is the total solution

 $\partial \Omega$ Ω \mathcal{U}_i u_{s} scattered x_2 trapped x_1

$$\begin{array}{ll} (\Delta + \omega^2)u = 0 & \text{in } \Omega, & \text{PDE} \\ u_n = 0 & \text{on } \partial\Omega, & \text{boundary condition (N)} \\ u(x_1 + nd, x_2) = \alpha^n u(x_1, x_2) & (x_1, x_2) \in \Omega, & \text{quasiperiodicity} \\ u(x_1, x_2) = \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, & x_2 > x_2^{(0)} & \text{radiation condition} \end{array}$$

- u_i is the incident, u_s is the scattered wave
- $u = u_i + u_s$ is the total solution
- *κ* is the **horizontal (on-surface) wavenumber**
- If there are multiple sources, quasiperiodicity condition ensures the solution obeys the symmetry of the boundary

$$\begin{aligned} (\Delta + \omega^2)u &= 0 & \text{in } \Omega, & \text{PDE} \\ u_n &= 0 & \text{on } \partial\Omega, & \text{boundary condition (} \\ u(x_1 + nd, x_2) &= \alpha^n u(x_1, x_2) & (x_1, x_2) \in \Omega, & \text{quasiperiodicity} \\ u(x_1, x_2) &= \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, & x_2 > x_2^{(0)} & \text{radiation condition} \end{aligned}$$

- u_i is the incident, u_s is the scattered wave
- $u = u_i + u_s$ is the total solution
- *κ* is the **horizontal (on-surface) wavenumber**
- If there are multiple sources, quasiperiodicity condition ensures the solution obeys the symmetry of the boundary
- The solution accrues an overall (Bloch) phase $\alpha = e^{i\kappa}$ over one period d.

$$\begin{aligned} (\Delta + \omega^2)u &= 0 & \text{in } \Omega, & \text{PDE} \\ u_n &= 0 & \text{on } \partial\Omega, & \text{boundary condition (} \\ u(x_1 + nd, x_2) &= \alpha^n u(x_1, x_2) & (x_1, x_2) \in \Omega, & \text{quasiperiodicity} \\ u(x_1, x_2) &= \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, & x_2 > x_2^{(0)} & \text{radiation condition} \end{aligned}$$

- u_i is the incident, u_s is the scattered wave
- $u = u_i + u_s$ is the total solution
- *κ* is the **horizontal (on-surface) wavenumber**
- If there are multiple sources, quasiperiodicity condition ensures the solution obeys the symmetry of the boundary
- The solution accrues an overall (Bloch) phase $\alpha = e^{i\kappa}$ over one period d.
- Set of possible horizontal wavevectors $\kappa_n = \kappa + 2\pi n$, $n \in \mathbb{Z}$, all lead to the same quasiperiodicity

$$\begin{aligned} (\Delta + \omega^2)u &= 0 & \text{in } \Omega, & \text{PDE} \\ u_n &= 0 & \text{on } \partial\Omega, & \text{boundary condition (} \\ u(x_1 + nd, x_2) &= \alpha^n u(x_1, x_2) & (x_1, x_2) \in \Omega, & \text{quasiperiodicity} \\ u(x_1, x_2) &= \sum_{n \in \mathbb{Z}} c_n e^{i(\kappa_n x_1 + k_n x_2)}, & x_2 > x_2^{(0)} & \text{radiation condition} \end{aligned}$$

- u_i is the incident, u_s is the scattered wave
- $u = u_i + u_s$ is the total solution
- *κ* is the **horizontal (on-surface) wavenumber**
- If there are multiple sources, quasiperiodicity condition ensures the solution obeys the symmetry of the boundary
- The solution accrues an overall (Bloch) phase $\alpha = e^{i\kappa}$ over one period d.
- Set of possible horizontal wavevectors $\kappa_n = \kappa + 2\pi n$, $n \in \mathbb{Z}$, all lead to the same quasiperiodicity
- If the total wavevector is $\mathbf{k} = (\kappa_n, k_n)$, then $k_n = \sqrt{\omega^2 \kappa_n^2}$ is the vertical wavevector (imaginary part always +ve)

Periodization

- Reduce computation to the unit cell by using the **periodic Green's function**, $\Phi_p(\mathbf{x},\mathbf{y})$, where \mathbf{x} is the target's, \mathbf{y} is the source's position vector:

$$-(\Delta + \omega^2)\Phi_p(\mathbf{x}, \mathbf{0}) = \delta(x_2) \sum_{n = -\infty}^{\infty} \alpha^n \delta(x_1 - nd)$$

d)

Periodization

- Reduce computation to the unit cell by using the **periodic Green's function**, $\Phi_p(\mathbf{x}, \mathbf{y})$, where \mathbf{x} is the target's, \mathbf{y} is the source's position vector:

$$-(\Delta + \omega^2)\Phi_p(\mathbf{x}, \mathbf{0}) = \delta(x_2) \sum_{n = -\infty}^{\infty} \alpha^n \delta(x_1 - nd)$$

• Separate into near- and far-field components:

Periodization

• Reduce computation to the unit cell by using the **periodic Green's function**, $\Phi_{p}(\mathbf{x}, \mathbf{y})$, where \mathbf{x} is the target's, \mathbf{y} is the source's position vector:

$$-(\Delta + \omega^2)\Phi_p(\mathbf{x}, \mathbf{0}) = \delta(x_2) \sum_{n = -\infty}^{\infty} \alpha^n \delta(x_1 - n\alpha)$$

• Separate into near- and far-field components:

- The $S_n(\omega, \kappa)$ are **lattice sums** involving sums over *n*-th order Hankel functions
 - Computed once per ω, κ
 - Slowly convergent \rightarrow use integral representation (Yasumoto and Yoshitomi, IEEETAP, 1999)
 - Only valid inside unit cell

Periodization II – Wood anomalies

- At κ -values where k_n^2 changes sign, i.e. $\kappa + 2n\pi = \pm \omega$
 - Behavior of periodic Green's function in the x_2 direction changes: oscillatory \rightarrow evanescent
 - Lattice sum representation breaks down (!)

Periodization II – Wood anomalies

- At κ -values where k_n^2 changes sign, i.e. $\kappa + 2n\pi = \pm \omega$
 - Behavior of periodic Green's function in the x_2 direction changes: oscillatory \rightarrow evanescent
 - Lattice sum representation breaks down (!)
- Criss-cross lines in $\omega \kappa$ plane

Periodization II – Wood anomalies

- At κ -values where k_n^2 changes sign, i.e. $\kappa + 2n\pi = \pm \omega$
 - Behavior of periodic Green's function in the x_2 direction changes:

oscillatory \rightarrow evanescent

- Lattice sum representation breaks down (!)
- Criss-cross lines in $\omega \kappa$ plane
- Due to symmetry, we can restrict ourselves to the first **Brillouin zone** (shown in red)

• Use a single-layer representation for the scattered wave (standard for Neumann bc): ſ

$$u_s = \mathcal{S}\sigma = \int_{\partial\Omega} \Phi_{\rm p}(x, y)\sigma(y) \mathrm{d}s_y$$

• Use a single-layer representation for the scattered wave (standard for Neumann bc):

$$u_s = \mathcal{S}\sigma = \int_{\partial\Omega} \Phi_{\rm p}(x, y)\sigma(y) \mathrm{d}s_y$$

• Using the appropriate **jump relations**, this gives the Fredholm integral equation $(I - 2\mathcal{D}^{\mathrm{T}})\sigma = -2f$

where $f = -(u_i)_n |_{\partial\Omega}$ is the boundary data, and σ is the unknown density.

• Use a single-layer representation for the scattered wave (standard for Neumann bc):

$$u_s = \mathcal{S}\sigma = \int_{\partial\Omega} \Phi_{\rm p}(x, y)\sigma(y) \mathrm{d}s_y$$

• Using the appropriate **jump relations**, this gives the Fredholm integral equation $(I - 2\mathcal{D}^{\mathrm{T}})\sigma = -2f$

where $f = -(u_i)_n |_{\partial\Omega}$ is the boundary data, and σ is the unknown density.

• Solve by discretizing the integral eq with **Nystrom's method**: if $v_i^{(N)} = \{(u_n)_i\}_{i=1}^N$ are the values of u_n at a set of quadrature nodes $\{s_i\}_{i=1}^N$ on the boundary with weights $\{w_i\}_{i=1}^N$, then

$$v_i^{(N)} - \sum_{j=1}^N w_j \Phi_p(s_i, s_j) v_j^{(N)} = f(s_i), \quad \forall i = 1, 2, ..., N,$$

v is the density σ evaluated on the boundary nodes.

• *u* can then be reconstructed anywhere using

$$u_{s}(t) = \sum_{j=1}^{N} w_{j} \Phi_{p}(t, s_{j}) v_{j}^{(N)}$$

• Use a single-layer representation for the scattered wave (standard for Neumann bc):

$$u_s = \mathcal{S}\sigma = \int_{\partial\Omega} \Phi_{\rm p}(x, y)\sigma(y) \mathrm{d}s_y$$

• Using the appropriate **jump relations**, this gives the Fredholm integral equation $(I - 2\mathcal{D}^{\mathrm{T}})\sigma = -2f$

where $f = -(u_i)_n |_{\partial \Omega}$ is the boundary data, and σ is the unknown density.

• Solve by discretizing the integral eq with **Nystrom's method**: if $v_i^{(N)} = \{(u_n)_i\}_{i=1}^N$ are the values of u_n at a set of quadrature nodes $\{s_i\}_{i=1}^N$ on the boundary with weights $\{w_i\}_{i=1}^N$, then

$$v_i^{(N)} - \sum_{j=1}^N w_j \Phi_p(s_i, s_j) v_j^{(N)} = f(s_i), \quad \forall i = 1, 2, ..., N,$$

v is the density σ evaluated on the boundary nodes.

• *u* can then be reconstructed anywhere using

$$u_{s}(t) = \sum_{j=1}^{N} w_{j} \Phi_{p}(t, s_{j}) v_{j}^{(N)}$$

D. Colton and R. Kress, *Inverse Acoustic and Electromagnetic Scattering Theory* D. Colton and R. Kress, Integral Equation Methods in Scattering Theory R. Kress, Linear Integral Equations I. Stakgold, Boundary value problems of mathematical physics, Paul Garabedian, Partial Differential Equations

• How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?

- How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:

- How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with adaptive corner refinement:
 - 1. Lay down some equally sized initial panels

- How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with **adaptive corner refinement**:
 - 1. Lay down some equally sized initial panels
 - 2. Split corner-adjacent panels in a 1 : (r 1) ratio (r = 2, dyadic refinement shown)

- How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with **adaptive corner refinement**:
 - 1. Lay down some equally sized initial panels
 - 2. Split corner-adjacent panels in a 1 : (r 1) ratio (r = 2, dyadic refinement shown)
 - 3. Lay down **Gauss Legendre** quadrature nodes on panels.

- How to choose the quadrature nodes $\{s_i\}_{i=1}^N$?
- Integrand is singular at corners!
- \rightarrow use panel quadrature with **adaptive corner refinement**:
 - 1. Lay down some equally sized initial panels
 - 2. Split corner-adjacent panels in a 1 : (r 1) ratio (r = 2, dyadic refinement shown)
 - 3. Lay down **Gauss Legendre** quadrature nodes on panels.
- Quadrature coordinates relative to the nearest corner to avoid catastrophic cancellation
- No special rules (yet) for close evaluation

• Reconstructing *u* via the single-layer representation only works inside the unit cell, because lattice sum needed for $\Phi_p(x, y)$ only converges in the unit cell

• Reconstructing *u* via the single-layer representation only works inside the unit cell, because lattice sum needed for $\Phi_{p}(x, y)$ only converges in the unit cell

- Reconstructing *u* via the single-layer representation only works inside the unit cell, because lattice sum needed for $\Phi_p(x, y)$ only converges in the unit cell
 - Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity:

$$u(x_1 + nd, x_2) = e^{in\kappa}u(x_1, x_2)$$

- Reconstructing *u* via the single-layer representation only works inside the unit cell, because lattice sum needed for $\Phi_p(x, y)$ only converges in the unit cell
 - Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity:

$$u(x_1 + nd, x_2) = e^{in\kappa}u(x_1, x_2)$$

• Vertically outside of unit cell (above), match solution to upwards propagating radiation condition via Fourier transform:

$$u(x_1, x_2) = \sum_{n \in \mathbb{Z}} c_n e^{i\kappa_n x_1 + k_n x_2}, \quad x_2 > x_2^{(0)} = \frac{d}{2}$$
$$u(x_1, x_2) e^{-i\kappa x_1} = \sum_{n \in \mathbb{Z}} c_n e^{2in\pi x_1} e^{ik_n x_2} = \sum_{n \in \mathbb{Z}} \tilde{c}_n e^{2in\pi x_1} \rightarrow$$

- Reconstructing *u* via the single-layer representation only works inside the unit cell, because lattice sum needed for $\Phi_p(x, y)$ only converges in the unit cell
 - Horizontally outside of unit cell (in neighboring cells), use quasiperiodicity:

$$u(x_1 + nd, x_2) = e^{in\kappa}u(x_1, x_2)$$

• Vertically outside of unit cell (above), match solution to upwards propagating radiation condition via Fourier transform:

$$u(x_1, x_2) = \sum_{n \in \mathbb{Z}} c_n e^{i\kappa_n x_1 + k_n x_2}, \quad x_2 > x_2^{(0)} = \frac{d}{2}$$
$$u(x_1, x_2) e^{-i\kappa x_1} = \sum_{n \in \mathbb{Z}} c_n e^{2in\pi x_1} e^{ik_n x_2} = \sum_{n \in \mathbb{Z}} \tilde{c}_n e^{2in\pi x_1} \rightarrow$$

Finding trapped modes — strategy

• Trapped modes occur when the Fredholm determinant is singular, i.e.

$$(I - 2D^{\mathrm{T}})\sigma = 0$$

has a nontrivial solution.

• Trapped modes occur when the Fredholm determinant is singular, i.e.

$$(I - 2D^{\mathrm{T}})\sigma = 0$$

has a nontrivial solution.

• This eigenmode then pollutes the solution of the integral equation

• Trapped modes occur when the Fredholm determinant is singular, i.e.

$$(I - 2D^{\mathrm{T}})\sigma = 0$$

has a nontrivial solution.

- This eigenmode then pollutes the solution of the integral equation
- D depends on κ, ω , so trapped modes only occur at some (κ, ω) combinations

• Trapped modes occur when the Fredholm determinant is singular, i.e.

$$(I - 2D^{\mathrm{T}})\sigma = 0$$

has a nontrivial solution.

- This eigenmode then pollutes the solution of the integral equation
- D depends on κ, ω , so trapped modes only occur at some (κ, ω) combinations
- To find them: fix ω , sweep over all possible $\kappa, \kappa \in [-\pi, \pi]$ and do root finding (e.g. Newton's method)

• Trapped modes occur when the Fredholm determinant is singular, i.e.

$$(I - 2D^{\mathrm{T}})\sigma = 0$$

has a nontrivial solution.

- This eigenmode then pollutes the solution of the integral equation
- D depends on κ, ω , so trapped modes only occur at some (κ, ω) combinations
- To find them: fix ω , sweep over all possible $\kappa, \kappa \in [-\pi, \pi]$ and do root finding (e.g. Newton's method)
- Compute:
 - Dispersion relation, $\omega(\kappa)$, of trapped modes
 - The group velocity of a trapped mode, $\frac{\mathrm{d}\omega}{\mathrm{d}\kappa}$, velocity at which the envelope of a wavepacket travels
 - Simple ray model: arrival time of different frequencies

1. Dispersion relation

- For Neumann boundary data, there exists a trapped mode at every κ
- As $\kappa \to 0$, approaches **light line** $\omega = \kappa$
- \rightarrow vertical decay length, $1/|\sqrt{\omega^2 \kappa^2}| \rightarrow 0$ as $\kappa \rightarrow 0$; weaker trapping
- Strongest trapping at $\kappa = \pi$; no trapped modes at frequencies above associated ω

1. Dispersion relation

- For Neumann boundary data, there exists a trapped mode at every κ
- As $\kappa \to 0$, approaches **light line** $\omega = \kappa$
- \rightarrow vertical decay length, $1/|\sqrt{\omega^2 \kappa^2}| \rightarrow 0$ as $\kappa \rightarrow 0$; weaker trapping
- Strongest trapping at $\kappa = \pi$; no trapped modes at frequencies above associated ω

2. Group velocity

- Dispersion is the separation of modes due to a difference of **phase and group** velocities (V_g)
- Strongest trapped modes at the highest frequencies travel slowest

1. Dispersion relation

- For Neumann boundary data, there exists a trapped mode at every κ
- As $\kappa \to 0$, approaches **light line** $\omega = \kappa$
- \rightarrow vertical decay length, $1/|\sqrt{\omega^2 \kappa^2}| \rightarrow 0$ as $\kappa \rightarrow 0$; weaker trapping
- Strongest trapping at $\kappa = \pi$; no trapped modes at frequencies above associated ω

2. Group velocity

- Dispersion is the separation of modes due to a difference of **phase and group** velocities (v_g)
- Strongest trapped modes at the highest frequencies travel slowest

3. Arrival times / "chirp" from point excitation

- Predict arrival time of trapped modes of different possible frequencies at a target \approx 30 m away (bottom of El Castillo)
 - Neglect: spreading along stairs in 3rd dimension; changes in amplitude; assume all trapped modes are excited by point excitation

1. Dispersion relation

- For Neumann boundary data, there exists a trapped mode at every κ
- As $\kappa \to 0$, approaches **light line** $\omega = \kappa$
- \rightarrow vertical decay length, $1/|\sqrt{\omega^2 \kappa^2}| \rightarrow 0$ as $\kappa \rightarrow 0$; weaker trapping
- Strongest trapping at $\kappa = \pi$; no trapped modes at frequencies above associated ω

2. Group velocity

- Dispersion is the separation of modes due to a difference of **phase and group** velocities (v_g)
- Strongest trapped modes at the highest frequencies travel slowest

3. Arrival times / "chirp" from point excitation

- Predict arrival time of trapped modes of different possible frequencies at a target \approx 30 m away (bottom of El Castillo)
 - Neglect: spreading along stairs in 3rd dimension; changes in amplitude; assume all trapped modes are excited by point excitation

• A neat trick: if a periodic array of point sources with quasiperiodicities κ is

$$\mathcal{J}_{p}(x,\kappa) = \sum_{n=-\infty}^{\infty} \delta(x_{1} - nd)\delta(x_{2})e^{in\kappa},$$

then a single point source is

$$\mathcal{J}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{J}_p(x,\kappa) \mathrm{d}\kappa \,.$$

→ the scattered wave from a single point source can be obtained by integrating $u_s(x, \kappa)$ in the first Brillouin zone, $\kappa \in [-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

• A neat trick: if a periodic array of point sources with quasiperiodicities κ is

$$\mathcal{J}_{p}(x,\kappa) = \sum_{n=-\infty}^{\infty} \delta(x_{1} - nd)\delta(x_{2})e^{in\kappa},$$

then a single point source is

$$\mathcal{J}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{J}_p(x,\kappa) \mathrm{d}\kappa \,.$$

→ the scattered wave from a single point source can be obtained by integrating $u_s(x, \kappa)$ in the first Brillouin zone, $\kappa \in [-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But:
 - Branch points + cuts at Wood anomalies $\kappa_{W},$ squareroot singularity
 - Poles at trapped modes $\kappa_{\rm tr}$

• A neat trick: if a periodic array of point sources with quasiperiodicities κ is

$$\mathcal{J}_{p}(x,\kappa) = \sum_{n=-\infty}^{\infty} \delta(x_{1} - nd)\delta(x_{2})e^{in\kappa},$$

then a single point source is

$$\mathcal{J}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{J}_p(x,\kappa) \mathrm{d}\kappa \,.$$

→ the scattered wave from a single point source can be obtained by integrating $u_s(x, \kappa)$ in the first Brillouin zone, $\kappa \in [-\pi, \pi]$. (Munk and Burrell, IEEETAP, 1979)

- But:
 - Branch points + cuts at Wood anomalies $\kappa_{W},$ squareroot singularity
 - Poles at trapped modes $\kappa_{\rm tr}$

 Branch points: this is a squareroot singularity, therefore it could be tackled with an appropriate quadrature rule

 $\Re(u(0.22, -0.16))$ in the complex κ -plane (for a given ω)

- Branch points: this is a squareroot singularity, therefore it could be tackled with an appropriate quadrature rule
- But poles require contour deformation (example path shown)

- Branch points: this is a squareroot singularity, therefore it could be tackled with an appropriate quadrature rule
- But poles require contour deformation (example path shown)
- Direction of branch cuts needs to be chosen so that contour obeys the least absorption principle:
 - At $\kappa = a + \varepsilon i$, resulting wave is evanescent in the vertical direction
 - Direction of branch cut determined by the choice of contour in computing lattice sum coefficients

- Branch points: this is a squareroot singularity, therefore it could be tackled with an appropriate quadrature rule
- But poles require contour deformation (example path shown)
- Direction of branch cuts needs to be chosen so that contour obeys the **least absorption principle:**
 - At $\kappa = a + \varepsilon i$, resulting wave is evanescent in the vertical direction
 - Direction of branch cut determined by the choice of contour in computing lattice sum coefficients
 - To test, simulate wave movement: $u(x, t) = u(x)e^{-i\omega t}$, and see if wave propagates away from source or towards it
- Sinusoidal contour, trapezoidal rule

- Branch points: this is a squareroot singularity, therefore it could be tackled with an appropriate quadrature rule
- But poles require contour deformation (example path shown)
- Direction of branch cuts needs to be chosen so that contour obeys the least absorption principle:
 - At $\kappa = a + \varepsilon i$, resulting wave is evanescent in the vertical direction
 - Direction of branch cut determined by the choice of contour in computing lattice sum coefficients
 - To test, simulate wave movement: $u(x, t) = u(x)e^{-i\omega t}$, and see if wave propagates away from source or towards it
- Sinusoidal contour, trapezoidal rule

Time-propagation of the total field away from the source (for a single ω)

0.48 0.36 .24

0.80 0.64).48 0.32 0.1600.C 48

• Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity

• Net flux (probability current in QM) conserved over a closed box: for an incoming plane wave, $\Im \int_{\Gamma} \bar{u}u_n ds = 0$ (no source inside) • Γ is the unit cell; periodicity means no net horizontal flux, so $\Im \int_{-d/2}^{d/2} \bar{u}u_{x_2} dx_1 = 0$. How close is it to 0 numerically?

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity

Convergence in flux conservation, Helm ext Dir, r = 2Total degrees of freedom in system 200 400 1000 1200 600 800 10^{-4} 10^{-5} 10^{-6} Net flux 10^{-7} 10^{-8} 10^{-9} 10^{-10} 25 5 10 15 20 30 0 Levels of refinement

• Net flux (probability current in QM) conserved over a closed box: for an incoming plane wave, $\Im \int_{\Gamma} \bar{u}u_n ds = 0$ (no source inside) • Γ is the unit cell; periodicity means no net horizontal flux, so $\Im \int_{-d/2}^{d/2} \bar{u}u_{x_2} dx_1 = 0$. How close is it to 0 numerically?

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity

Convergence in flux conservation, Helm ext Dir, r = 2Total degrees of freedom in system 200 400 1000 1200 600 800 10^{-4} 10^{-5} 10^{-6} Net flux 10^{-7} 10^{-8} 10^{-9} 10^{-10} 5 10 20 25 30 15 0 Levels of refinement

10

5

0

15

Levels of refinement

35

25

20

- Analytic solution unknown and self-convergence can mislead \rightarrow devise convergence test via conserved quantity
- Γ is the unit cell; periodicity means no net horizontal flux, so \Im

• Net flux (probability current in QM) conserved over a closed box: for an incoming plane wave, $\Im \int_{\Gamma} \bar{u} u_n ds = 0$ (no source inside) $\bar{u}u_{x_2}dx_1 = 0$. How close is it to 0 numerically? Convergence in flux conservation, Helm ext Neu, r = 3

Total degrees of freedom in system 600 800 1000 15 20 25 Levels of refinement

Convergence — reconstructing a point source, array scanning quad nodes

• A simple test of convergence in the number of array scanning quadrature nodes:

How well can we reconstruct a single point source from a periodic array of point sources?

Convergence — reconstructing a point source, array scanning quad nodes

• A simple test of convergence in the number of array scanning quadrature nodes:

How well can we reconstruct a single point source from a periodic array of point sources?

Convergence in number of array scanning (trapezoidal) quadrature nodes

• What fraction of the total flux is transported in trapped modes?

- What fraction of the total flux is transported in trapped modes?
- Claim: infinitely far away from the source, only trapped mode remains, i.e. only contribution to κ -integral will be from $\kappa = \kappa_{tr}$

- What fraction of the total flux is transported in trapped modes?
- Claim: infinitely far away from the source, only trapped mode **remains,** i.e. only contribution to κ -integral will be from $\kappa = \kappa_{\rm fr}$
- Why? Take

$$\lim_{n \to +\infty} u(x_1 + nd, x_2) = \frac{1}{2\pi} \lim_{n \to +\infty} \int_{-\pi}^{\pi} u_{\kappa}(x_1, x_2) e^{in\kappa} d\kappa.$$

Recall location of branch points at $\kappa = \pm \kappa_W$, direction of branch cuts, location of poles at $\kappa = \pm \kappa_{tr}$, and contour of least absorption;

- 2.104 - 1.581 - 1.058 - 0.536 - 0.013 - -0.510 -1.032-1.555-2.077-2.600

- What fraction of the total flux is transported in trapped modes?
- Claim: infinitely far away from the source, only trapped mode remains, i.e. only contribution to κ -integral will be from $\kappa = \kappa_{tr}$
- Why? Take

$$\lim_{n \to +\infty} u(x_1 + nd, x_2) = \frac{1}{2\pi} \lim_{n \to +\infty} \int_{-\pi}^{\pi} u_{\kappa}(x_1, x_2) e^{in\kappa} d\kappa.$$

Recall location of branch points at $\kappa = \pm \kappa_W$, direction of branch cuts, location of poles at $\kappa = \pm \kappa_{tr}$, and contour of least absorption;

Close contour in upper half plane (careful around branch cut) \rightarrow only residual of **right-hand pole** remains. Therefore,

$$\lim_{n \to +\infty} u(x_1 + nd, x_2) = i \operatorname{Res}_{\kappa = \kappa_{\operatorname{tr}}} u(x_1, x_2) \quad \text{up to a complex phase}$$

For $n \rightarrow -\infty$, residue of left-hand pole dictates.

- 2.104 - 1.581 - 1.058 - 0.536 - 0.013 - -0.510- -1.032- -1.555- -2.077- -2.600

- What fraction of the total flux is transported in trapped modes?
- Claim: infinitely far away from the source, only trapped mode remains, i.e. only contribution to κ -integral will be from $\kappa = \kappa_{tr}$
- Why? Take

$$\lim_{n \to +\infty} u(x_1 + nd, x_2) = \frac{1}{2\pi} \lim_{n \to +\infty} \int_{-\pi}^{\pi} u_{\kappa}(x_1, x_2) e^{in\kappa} d\kappa.$$

Recall location of branch points at $\kappa = \pm \kappa_W$, direction of branch cuts, location of poles at $\kappa = \pm \kappa_{tr}$, and contour of least absorption;

Close contour in upper half plane (careful around branch cut) \rightarrow only residual of **right-hand pole** remains. Therefore,

 $\lim_{n \to +\infty} u(x_1 + nd, x_2) = i \operatorname{Res}_{\kappa = \kappa_{\operatorname{tr}}} u(x_1, x_2) \quad \text{up to a complex phase.}$

For $n \rightarrow -\infty$, residue of left-hand pole dictates.

- Compute residues numerically, on a small circle around $\kappa_{\rm tr}$ with trapezoidal rule.

- 2.104 - 1.581 - 1.058 - 0.536 - 0.013 - -0.510- -1.032- -1.555- -2.077- -2.600

• We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by

taking its residue around the trapping wavenumber $\pm \kappa_{\rm tr}$

- We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{\rm tr}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u dx_{2}\right),$$

- We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{\rm tr}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u \mathrm{d}x_{2}\right),$$

- We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{tr}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u \mathrm{d}x_{2}\right),$$

- We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{\rm tr}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u \mathrm{d}x_{2}\right),$$

where integral extends from boundary to where the mode has sufficiently decayed, but at what x_1 ?

• Simple Gauss—Legendre, closest node no closer than width of smallest panel on boundary.

- We reconstruct the field u(x) at an infinitely far unit cell on the right/left (up to a phase) by taking its residue around the trapping wavenumber $\pm \kappa_{tr}$
- Then all flux moving to right/left is in a trapped mode; compute numerically:

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u dx_{2}\right),$$

- Simple Gauss—Legendre, closest node no closer than width of smallest panel on boundary.
- Total power injected into the system is $F_{tot} = \frac{1}{4} + \Im(u(x_0))$, with x_0 the source location.

- taking its residue around the trapping wavenumber $\pm \kappa_{\rm tr}$

$$F_{\text{trapped},\rightarrow} = \Im\left(\int_{x_{2,0}}^{a} \bar{u}\partial_{x_{1}}u dx_{2}\right),$$

what x_1 ?

Future work

• How does the positioning of the source affect the power in trapped modes? Left/right asymmetry?
- How does the positioning of the source affect the power in trapped modes? Left/right asymmetry?
- Poles coalesce as $\kappa_{tr} \rightarrow \pm \pi$. How to deal with loss of accuracy in residual calculation?

- How does the positioning of the source affect the power in trapped modes? Left/right asymmetry?
- Poles coalesce as $\kappa_{tr} \rightarrow \pm \pi$. How to deal with loss of accuracy in residual calculation?
- What is the most efficient contour for array scanning?

- How does the positioning of the source affect the power in trapped modes? Left/right asymmetry?
- Poles coalesce as $\kappa_{tr} \rightarrow \pm \pi$. How to deal with loss of accuracy in residual calculation?
- What is the most efficient contour for array scanning?
- Optimize current bottleneck is reconstruction of the field, repeated evaluation of Bessel functions

- How does the positioning of the source affect the power in trapped modes? Left/right asymmetry?
- Poles coalesce as $\kappa_{tr} \rightarrow \pm \pi$. How to deal with loss of accuracy in residual calculation?
- What is the most efficient contour for array scanning?
- Optimize current bottleneck is reconstruction of the field, repeated evaluation of Bessel functions
- Can we do this in 3D? Band structure is more complex.

Thank you!