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• Domain is infinite, boundary is simple  good candidate for using a boundary element method


• Assume boundary is infinite, two-dimensional, periodic staircase, sound-hard


• First consider (quasi-)periodic problem, reduce computation to unit cell


• Use the array scanning method to arrive at the solution from a single point source, from 

periodic array of point sources


• This will involve integrating over the quasiperiodicity parameter,  
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Problem setup - multiple sources
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•  is the incident,  is the scattered wave


•  is the total solution


•  is the horizontal (on-surface) wavenumber 

• If there are multiple sources, quasiperiodicity condition ensures the 

solution obeys the symmetry of the boundary 


• The solution accrues an overall (Bloch) phase  over one period .


• Set of possible horizontal wavevectors ,   , all lead to 

the same quasiperiodicity


• If the total wavevector is , then  is the vertical 

wavevector (imaginary part always +ve)
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• Reduce computation to the unit cell by using the periodic Green’s function, , 
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• The  are lattice sums involving sums over -th order Hankel 

functions


• Computed once per 


• Slowly convergent  use integral representation (Yasumoto and 

Yoshitomi, IEEETAP, 1999)


• Only valid inside unit cell
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• At -values where  changes sign, i.e. 


• Behavior of periodic Green’s function in the  direction changes: 

oscillatory  evanescent


• Lattice sum representation breaks down (!)


• Criss-cross lines in  plane


• Due to symmetry, we can restrict ourselves to the first Brillouin zone 

(shown in red)
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Periodization II — Wood anomalies
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Boundary integral formulation; quadrature

• How to choose the quadrature nodes ?


• Integrand is singular at corners! 


•  use panel quadrature with adaptive corner refinement:


1. Lay down some equally sized initial panels


2. Split corner-adjacent panels in a  ratio ( , dyadic 

refinement shown)


3. Lay down Gauss—Legendre quadrature nodes on panels.


• Quadrature coordinates relative to the nearest corner to avoid catastrophic 

cancellation


• No special rules (yet) for close evaluation

{si}N
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1 : (r − 1) r = 2
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Finding trapped modes — strategy

• Trapped modes occur when the Fredholm determinant is singular, i.e.





has a nontrivial solution. 


• This eigenmode then pollutes the solution of the integral equation


•  depends on , so trapped modes only occur at some  

combinations


• To find them: fix , sweep over all possible ,  and do root 

finding (e.g. Newton’s method) 


• Compute:


• Dispersion relation, , of trapped modes


• The group velocity of a trapped mode, , velocity at which the 

envelope of a wavepacket travels


• Simple ray model: arrival time of different frequencies

(I − 2DT)σ = 0

D κ, ω (κ, ω)

ω κ κ ∈ [−π, π]

ω(κ)
dω
dκ

Trapped mode at κ = π, ω = 2.5514805
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Array scanning

• A neat trick: if a periodic array of point sources with 

quasiperiodicities  is
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then a single point source is
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• Poles at trapped modes 

κ

𝒥p(x, κ) =
∞

∑
n=−∞

δ(x1 − nd)δ(x2)einκ

𝒥(x) =
1

2π ∫
π

−π
𝒥p(x, κ)dκ .

→

us(x, κ) κ ∈ [−π, π]

κW

κtr
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Array scanning

• Branch points: this is a squareroot singularity, therefore it could 

be tackled with an appropriate quadrature rule


• But poles require contour deformation (example path shown)


• Direction of branch cuts needs to be chosen so that contour 

obeys the least absorption principle: 

• At , resulting wave is evanescent in the vertical 

direction


• Direction of branch cut determined by the choice of contour 

in computing lattice sum coefficients


• To test, simulate wave movement: , and 

see if wave propagates away from source or towards it


• Sinusoidal contour, trapezoidal rule

κ = a + εi

u(x, t) = u(x)e−iωt

Time-propagation of the total field away from the source (for a single )ω
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For residue of left-hand pole dictates. 
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Power distribution in trapped modes
• What fraction of the total flux is transported in trapped modes? 

• Claim: infinitely far away from the source, only trapped mode 

remains, i.e. only contribution to -integral will be from 


• Why? Take 


.


Recall location of branch points at direction of branch cuts, 

location of poles at , and contour of least absorption;


Close contour in upper half plane (careful around branch cut)  only 

residual of right-hand pole remains. Therefore,





For residue of left-hand pole dictates. 

• Compute residues numerically, on a small circle around  with 

trapezoidal rule. 

κ κ = κtr

lim
n→+∞

u(x1 + nd, x2) =
1

2π
lim

n→+∞ ∫
π

−π
uκ(x1, x2)einκdκ

κ = ± κW,

κ = ± κtr

→

lim
n→+∞

u(x1 + nd, x2) = iResκ=κtr
u(x1, x2) up to a complex phase.

n → − ∞,

κtr

(at const )ω
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Future work

• How does the positioning of the source affect the power in trapped modes? 

Left/right asymmetry?


• Poles coalesce as . How to deal with loss of accuracy in residual 

calculation?


• What is the most efficient contour for array scanning?


• Optimize — current bottleneck is reconstruction of the field, repeated 

evaluation of Bessel functions


• Can we do this in 3D? Band structure is more complex. 

κtr → ± π



Thank you!


